Anna Gaulton

List of Publications by Citations

Source: https://exaly.com/author-pdf/8442436/anna-gaulton-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

8,620 26 56 50 h-index g-index citations papers 11,286 16.3 5.62 56 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
50	ChEMBL: a large-scale bioactivity database for drug discovery. <i>Nucleic Acids Research</i> , 2012 , 40, D1100-7	20.1	2257
49	The ChEMBL database in 2017. Nucleic Acids Research, 2017, 45, D945-D954	20.1	1059
48	The ChEMBL bioactivity database: an update. <i>Nucleic Acids Research</i> , 2014 , 42, D1083-90	20.1	1052
47	A comprehensive map of molecular drug targets. <i>Nature Reviews Drug Discovery</i> , 2017 , 16, 19-34	64.1	1032
46	ChEMBL: towards direct deposition of bioassay data. <i>Nucleic Acids Research</i> , 2019 , 47, D930-D940	20.1	453
45	The Global Phosphorylation Landscape of SARS-CoV-2 Infection. <i>Cell</i> , 2020 , 182, 685-712.e19	56.2	439
44	Open Targets: a platform for therapeutic target identification and validation. <i>Nucleic Acids Research</i> , 2017 , 45, D985-D994	20.1	241
43	PSICQUIC and PSISCORE: accessing and scoring molecular interactions. <i>Nature Methods</i> , 2011 , 8, 528-9	21.6	227
42	ChEMBL web services: streamlining access to drug discovery data and utilities. <i>Nucleic Acids Research</i> , 2015 , 43, W612-20	20.1	215
41	The druggable genome and support for target identification and validation in drug development. <i>Science Translational Medicine</i> , 2017 , 9,	17.5	212
40	The EBI RDF platform: linked open data for the life sciences. <i>Bioinformatics</i> , 2014 , 30, 1338-9	7.2	160
39	Unexplored therapeutic opportunities in the human genome. <i>Nature Reviews Drug Discovery</i> , 2018 , 17, 317-332	64.1	156
38	Pharos: Collating protein information to shed light on the druggable genome. <i>Nucleic Acids Research</i> , 2017 , 45, D995-D1002	20.1	146
37	SureChEMBL: a large-scale, chemically annotated patent document database. <i>Nucleic Acids Research</i> , 2016 , 44, D1220-8	20.1	102
36	UniChem: a unified chemical structure cross-referencing and identifier tracking system. <i>Journal of Cheminformatics</i> , 2013 , 5, 3	8.6	90
35	Activity, assay and target data curation and quality in the ChEMBL database. <i>Journal of Computer-Aided Molecular Design</i> , 2015 , 29, 885-96	4.2	79
34	Minimum information about a bioactive entity (MIABE). <i>Nature Reviews Drug Discovery</i> , 2011 , 10, 661-9	64.1	69

(2007-2015)

33	The complex portalan encyclopaedia of macromolecular complexes. <i>Nucleic Acids Research</i> , 2015 , 43, D479-84	20.1	68
32	Chemical, target, and bioactive properties of allosteric modulation. <i>PLoS Computational Biology</i> , 2014 , 10, e1003559	5	63
31	Improving the odds of drug development success through human genomics: modelling study. <i>Scientific Reports</i> , 2019 , 9, 18911	4.9	54
30	Large scale comparison of QSAR and conformal prediction methods and their applications in drug discovery. <i>Journal of Cheminformatics</i> , 2019 , 11, 4	8.6	53
29	Visualizing the drug target landscape. <i>Drug Discovery Today</i> , 2010 , 15, 3-15	8.8	45
28	An open source chemical structure curation pipeline using RDKit. <i>Journal of Cheminformatics</i> , 2020 , 12, 51	8.6	40
27	Bioinformatics approaches for the classification of G-protein-coupled receptors. <i>Current Opinion in Pharmacology</i> , 2003 , 3, 114-20	5.1	35
26	Chemical databases: curation or integration by user-defined equivalence?. <i>Drug Discovery Today: Technologies</i> , 2015 , 14, 17-24	7.1	32
25	Collation and data-mining of literature bioactivity data for drug discovery. <i>Biochemical Society Transactions</i> , 2011 , 39, 1365-70	5.1	27
24	UniChem: extension of InChI-based compound mapping to salt, connectivity and stereochemistry layers. <i>Journal of Cheminformatics</i> , 2014 , 6, 43	8.6	25
23	A drug target slim: using gene ontology and gene ontology annotations to navigate protein-ligand target space in ChEMBL. <i>Journal of Biomedical Semantics</i> , 2016 , 7, 59	2.2	21
22	Actionable druggable genome-wide Mendelian randomization identifies repurposing opportunities for COVID-19. <i>Nature Medicine</i> , 2021 , 27, 668-676	50.5	19
21	Managing expectations: assessment of chemistry databases generated by automated extraction of chemical structures from patents. <i>Journal of Cheminformatics</i> , 2015 , 7, 49	8.6	14
20	Drug target central. Expert Opinion on Drug Discovery, 2009, 4, 857-72	6.2	13
19	A large-scale crop protection bioassay data set. <i>Scientific Data</i> , 2015 , 2, 150032	8.2	12
18	Scientific Lenses to Support Multiple Views over Linked Chemistry Data. <i>Lecture Notes in Computer Science</i> , 2014 , 98-113	0.9	12
17	Using ChEMBL web services for building applications and data processing workflows relevant to drug discovery. <i>Expert Opinion on Drug Discovery</i> , 2017 , 12, 757-767	6.2	12
16	Functional assignment of MAPK phosphatase domains. <i>Proteins: Structure, Function and Bioinformatics</i> , 2007 , 69, 19-31	4.2	10

15	Motif3D: Relating protein sequence motifs to 3D structure. <i>Nucleic Acids Research</i> , 2003 , 31, 3333-6	20.1	10
14	Target-Based Evaluation of "Drug-Like" Properties and Ligand Efficiencies. <i>Journal of Medicinal Chemistry</i> , 2021 , 64, 7210-7230	8.3	9
13	PPDMs-a resource for mapping small molecule bioactivities from ChEMBL to Pfam-A protein domains. <i>Bioinformatics</i> , 2015 , 31, 776-8	7.2	8
12	Transporter taxonomy - a comparison of different transport protein classification schemes. <i>Drug Discovery Today: Technologies</i> , 2014 , 12, e37-46	7.1	6
11	A large-scale dataset of in vivo pharmacology assay results. <i>Scientific Data</i> , 2018 , 5, 180230	8.2	6
10	Transporter assays and assay ontologies: useful tools for drug discovery. <i>Drug Discovery Today: Technologies</i> , 2014 , 12, e47-54	7.1	4
9	The Molecular Basis of Predicting Druggability1315-1334		3
8	Drug Safety Data Curation and Modeling in ChEMBL: Boxed Warnings and Withdrawn Drugs. <i>Chemical Research in Toxicology</i> , 2021 , 34, 385-395	4	3
7	Insights into Transporter Classifications: an Outline of Transporters as Drug Targets. <i>Methods and Principles in Medicinal Chemistry</i> , 2017 , 1-20	0.4	2
6	Reply to "Missed opportunities in large scale comparison of QSAR and conformal prediction methods and their applications in drug discovery". <i>Journal of Cheminformatics</i> , 2019 , 11, 64	8.6	2
5	Validation of lipid-related therapeutic targets for coronary heart disease prevention using human genetics. <i>Nature Communications</i> , 2021 , 12, 6120	17.4	2
4	The PRINTS protein fingerprint database: functional and evolutionary applications 2005,		1
3	Validation of lipid-related therapeutic targets for coronary heart disease prevention using human gene	etics	1
2	Actionable druggable genome-wide Mendelian randomization identifies repurposing opportunities for COVID-19		1
1	Shouldnutenantiomeric purity be included in the Uminimum information about a bioactive entity? Response from the MIABE group. <i>Nature Reviews Drug Discovery</i> , 2012 , 11, 730-730	64.1	