
Chun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8442316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeted Codelivery of an Antigen and Dual Agonists by Hybrid Nanoparticles for Enhanced Cancer Immunotherapy. Nano Letters, 2019, 19, 4237-4249.	9.1	135
2	Immune responses to vaccines delivered by encapsulation into and/or adsorption onto cationic lipid-PLGA hybrid nanoparticles. Journal of Controlled Release, 2016, 225, 230-239.	9.9	88
3	Co-delivery of antigen and dual agonists by programmed mannose-targeted cationic lipid-hybrid polymersomes for enhanced vaccination. Biomaterials, 2019, 206, 25-40.	11.4	72
4	Folate-targeted polymersomes loaded with both paclitaxel and doxorubicin for the combination chemotherapy of hepatocellular carcinoma. Acta Biomaterialia, 2017, 58, 399-412.	8.3	71
5	Folate-modified lipid–polymer hybrid nanoparticles for targeted paclitaxel delivery. International Journal of Nanomedicine, 2015, 10, 2101.	6.7	70
6	Galactose-functionalized multi-responsive nanogels for hepatoma-targeted drug delivery. Nanoscale, 2015, 7, 3137-3146.	5.6	68
7	Development of self-assembling peptide nanovesicle with bilayers for enhanced EGFR-targeted drug and gene delivery. Biomaterials, 2016, 82, 194-207.	11.4	65
8	Dual pH/reduction-responsive hybrid polymeric micelles for targeted chemo-photothermal combination therapy. Acta Biomaterialia, 2018, 75, 371-385.	8.3	64
9	Poly(2-aminoethyl methacrylate) with Well-Defined Chain Length for DNA Vaccine Delivery to Dendritic Cells. Biomacromolecules, 2011, 12, 4373-4385.	5.4	62
10	Well-defined block copolymers for gene delivery to dendritic cells: Probing the effect of polycation chain-length. Journal of Controlled Release, 2010, 142, 229-237.	9.9	60
11	EDTA-Inspired Polydentate Hydrogels with Exceptionally High Heavy Metal Adsorption Capacity as Reusable Adsorbents for Wastewater Purification. ACS Applied Materials & Interfaces, 2020, 12, 25276-25285.	8.0	50
12	A multifunctional ribonuclease A-conjugated carbon dot cluster nanosystem for synchronous cancer imaging and therapy. Nanoscale Research Letters, 2014, 9, 397.	5.7	47
13	The effect of guanidinylation of PEGylated poly(2-aminoethyl methacrylate) on the systemic delivery of siRNA. Biomaterials, 2013, 34, 3120-3131.	11.4	46
14	Polymers for DNA Vaccine Delivery. ACS Biomaterials Science and Engineering, 2017, 3, 108-125.	5.2	44
15	Nanocapsules engineered from polyhedral ZIF-8 templates for bone-targeted hydrophobic drug delivery. Biomaterials Science, 2017, 5, 658-662.	5.4	39
16	Polymers for viral gene delivery. Expert Opinion on Drug Delivery, 2008, 5, 385-401.	5.0	29
17	A visible fluorescent nanovaccine based on functional genipin crosslinked ovalbumin protein nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1087-1098.	3.3	29
18	A Cascadeâ€Targeting Nanocapsule for Enhanced Photothermal Tumor Therapy with Aid of Autophagy Inhibition. Advanced Healthcare Materials, 2018, 7, e1800121.	7.6	27

CHUN WANG

#	Article	IF	CITATIONS
19	Well-defined star polymers for co-delivery of plasmid DNA and imiquimod to dendritic cells. Acta Biomaterialia, 2017, 48, 378-389.	8.3	25
20	pHâ€Responsive Micelles Based on Amphiphilic Block Copolymers Bearing Ortho Ester Pendants as Potential Drug Carriers. Macromolecular Chemistry and Physics, 2011, 212, 1185-1192.	2.2	22
21	Temperature/pH dual responsive microgels of crosslinked poly(<i>N</i> â€vinylcaprolactamâ€ <i>co</i> â€undecenoic acid) as biocompatible materials for controlled release of doxorubicin. Journal of Applied Polymer Science, 2014, 131, .	2.6	21
22	Polymeric Biomaterials for Tissue Engineering Applications 2011. International Journal of Polymer Science, 2011, 2011, 1-2.	2.7	20
23	PEGylated block copolymers containing tertiary amine side-chains cleavable via acid-labile ortho ester linkages for pH-triggered release of DNA. Polymer, 2014, 55, 2761-2771.	3.8	20
24	Co-Delivery of Imiquimod and Plasmid DNA via an Amphiphilic pH-Responsive Star Polymer that Forms Unimolecular Micelles in Water. Polymers, 2016, 8, 397.	4.5	20
25	Biocompatible Fe–Si Nanoparticles with Adjustable Self-Regulation of Temperature for Medical Applications. ACS Applied Materials & Interfaces, 2015, 7, 12649-12654.	8.0	18
26	Injectable Hybrid Hydrogels of Hyaluronic Acid Crosslinked by Wellâ€Defined Synthetic Polycations: Preparation and Characterization In Vitro and In Vivo. Macromolecular Bioscience, 2015, 15, 668-681.	4.1	18
27	Semi-solid materials for controlled release drug formulation: current status and future prospects. Frontiers of Chemical Science and Engineering, 2014, 8, 225-232.	4.4	16
28	Coordination microparticle vaccines engineered from tumor cell templates. Chemical Communications, 2019, 55, 1568-1571.	4.1	12
29	Gels without Vapor Pressure: Soft, Nonaqueous, and Solventâ€Free Supramolecular Biomaterials for Prospective Parenteral Drug Delivery Applications. Advanced Healthcare Materials, 2019, 8, e1800908.	7.6	10
30	Mucoadhesive wafers composed of binary polymer blends for sublingual delivery and preservation of protein vaccines. Journal of Controlled Release, 2021, 330, 427-437.	9.9	10
31	A Dissolvable Microneedle Formulation of <i>Bordetella pertussis</i> Subunit Vaccine: Translational Development and Immunological Evaluation in Mice. ACS Applied Bio Materials, 2019, 2, 5053-5061.	4.6	9
32	Modular Integration of Hydrogel Neural Interfaces. ACS Central Science, 2021, 7, 1516-1523.	11.3	9
33	Nanocomposite Polymers with "Slimy―Surfaces that Refresh Following Abrasion. ACS Biomaterials Science and Engineering, 2016, 2, 180-187.	5.2	8
34	Polymeric Biomaterials for Tissue Engineering Applications. International Journal of Polymer Science, 2010, 2010, 1-2.	2.7	5
35	Star-shaped poly(2-aminoethyl methacrylate)s as non-viral gene carriers: Exploring structure-function relationship. Colloids and Surfaces B: Biointerfaces, 2019, 181, 721-727.	5.0	4
36	Combination of irreversible electroporation with sustained release of a synthetic membranolytic polymer for enhanced cancer cell killing. Scientific Reports, 2021, 11, 10810.	3.3	3

CHUN WANG

#	Article	IF	CITATIONS
37	Polymer-Based Dual-Responsive Self-Emulsifying Nanodroplets as Potential Carriers for Poorly Soluble Drugs. ACS Applied Bio Materials, 2021, 4, 4441-4449.	4.6	2
38	External temperature control of lymphatic drainage of thermo-sensitive nanomaterials. Biomaterials Science, 2019, 7, 750-759.	5.4	1
39	Oleogels: Gels without Vapor Pressure: Soft, Nonaqueous, and Solventâ€Free Supramolecular Biomaterials for Prospective Parenteral Drug Delivery Applications (Adv. Healthcare Mater. 6/2019). Advanced Healthcare Materials, 2019, 8, 1970023.	7.6	1
40	"My First Sixty Years in Science― Journal of Controlled Release, 2021, 329, 1231-1233.	9.9	0
41	Evaluation of cationic polymers as carriers and adjuvants for DNA vaccines. FASEB Journal, 2008, 22, 575-575.	0.5	0
42	Corrigendum to "A visible fluorescent nanovaccine based on functional genipin crosslinked ovalbumin protein nanoparticles―[Nanomedicine: Nanotechnology, Biology, and Medicine 14 (2018) 1087–1098/NANO 1763]. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, , 102524.	3.3	0