Carsten Carlberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8441670/publications.pdf Version: 2024-02-01

		18436	33814
292	13,746	62	99
papers	citations	h-index	g-index
331	331	331	11673
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Two nuclear signalling pathways for vitamin D. Nature, 1993, 361, 657-660.	13.7	541
2	Fluorescence resonance energy transfer analysis of the structure of the four-way DNA junction. Biochemistry, 1992, 31, 4846-4856.	1.2	270
3	Transcriptional activation of the nuclear receptor RZRα by the pineal gland hormone melatonin and identification of CGP 52608 as a synthetic ligand. Nucleic Acids Research, 1995, 23, 327-333.	6.5	248
4	Vitamin D receptor signaling mechanisms: Integrated actions of a well-defined transcription factor. Steroids, 2013, 78, 127-136.	0.8	234
5	The Nuclear Receptor for Melatonin Represses 5-Lipoxygenase Gene Expression in Human B Lymphocytes. Journal of Biological Chemistry, 1995, 270, 7037-7040.	1.6	230
6	Regulation of the human p21(waf1/cip1) gene promoter via multiple binding sites for p53 and the vitamin D3 receptor. Nucleic Acids Research, 2006, 34, 543-554.	6.5	225
7	Nuclear hormone 1α,25-dihydroxyvitamin D3 elicits a genome-wide shift in the locations of VDR chromatin occupancy. Nucleic Acids Research, 2011, 39, 9181-9193.	6.5	207
8	RZRs, a new family of retinoid-related orphan receptors that function as both monomers and homodimers Molecular Endocrinology, 1994, 8, 757-770.	3.7	202
9	Electrophilic Nitro-fatty Acids Activate NRF2 by a KEAP1 Cysteine 151-independent Mechanism. Journal of Biological Chemistry, 2011, 286, 14019-14027.	1.6	182
10	The Human Peroxisome Proliferator-activated Receptor δGene is a Primary Target of 1α,25-Dihydroxyvitamin D3 and its Nuclear Receptor. Journal of Molecular Biology, 2005, 349, 248-260.	2.0	180
11	Comprehensive Analysis of PPAR <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="E1"><mml:mi>α</mml:mi></mml:math> -Dependent Regulation of Hepatic Lipid Metabolism by Expression Profiling. PPAR Research, 2007, 2007, 1-13.	1.1	178
12	Gene Regulation by Vitamin D3. Critical Reviews in Eukaryotic Gene Expression, 1998, 8, 19-42.	0.4	166
13	The orphan receptor family RZR/ROR, melatonin and 5-lipoxygenase: An unexpected relationship. Journal of Pineal Research, 1995, 18, 171-178.	3.4	160
14	Mechanisms of Nuclear Signalling by Vitamin D3. Interplay with Retinoid and Thyroid Hormone Signalling. FEBS Journal, 1995, 231, 517-527.	0.2	160
15	DICKKOPF-4 is induced by TCF/β-catenin and upregulated in human colon cancer, promotes tumour cell invasion and angiogenesis and is repressed by 11±,25-dihydroxyvitamin D3. Oncogene, 2008, 27, 4467-4477.	2.6	152
16	VDR-Alien: a novel, DNA-selective vitamin D3 receptor-corepressor partnership. FASEB Journal, 2000, 14, 1455-1463.	0.2	147
17	Vitamin D3-thyroid hormone receptor heterodimer polarity directs ligand sensitivity of transactivation. Nature, 1994, 370, 382-386.	13.7	144
18	Vitamins as Hormones. Hormone and Metabolic Research, 2007, 39, 71-84.	0.7	144

#	Article	IF	CITATIONS
19	Natural Vitamin D ₃ Response Elements Formed by Inverted Palindromes: Polarity-Directed Ligand Sensitivity of Vitamin D ₃ Receptor-Retinoid X Receptor Heterodimer-Mediated Transactivation. Molecular and Cellular Biology, 1995, 15, 1154-1161.	1.1	136
20	Nutrigenomics of Vitamin D. Nutrients, 2019, 11, 676.	1.7	133
21	25-Hydroxyvitamin D3 is an agonistic vitamin D receptor ligand. Journal of Steroid Biochemistry and Molecular Biology, 2010, 118, 162-170.	1.2	130
22	VDRâ€Alien: a novel, DNAâ€selective vitamin D ₃ receptorâ€corepressor partnership. FASEB Journal, 2000, 14, 1455-1463.	0.2	129
23	Spatio-temporal Activation of Chromatin on the Human CYP24 Gene Promoter in the Presence of 11±,25-Dihydroxyvitamin D3. Journal of Molecular Biology, 2005, 350, 65-77.	2.0	129
24	An update on vitamin D signaling and cancer. Seminars in Cancer Biology, 2022, 79, 217-230.	4.3	129
25	Chromatin acetylation at transcription start sites and vitamin D receptor binding regions relates to effects of 11±,25-dihydroxyvitamin D3 and histone deacetylase inhibitors on gene expression. Nucleic Acids Research, 2013, 41, 110-124.	6.5	123
26	A role of melatonin in neuroectodermalâ€nesodermal interactions: the hair follicle synthesizes melatonin and expresses functional melatonin receptors. FASEB Journal, 2005, 19, 1710-1712.	0.2	121
27	Patterns of Genome-Wide VDR Locations. PLoS ONE, 2014, 9, e96105.	1.1	120
28	Genome-wide (over)view on the actions of vitamin D. Frontiers in Physiology, 2014, 5, 167.	1.3	115
29	Gene Regulation by Melatonin. Annals of the New York Academy of Sciences, 2000, 917, 387-396.	1.8	114
30	The concept of the personal vitamin D response index. Journal of Steroid Biochemistry and Molecular Biology, 2018, 175, 12-17.	1.2	114
31	Profiling of promoter occupancy by PPARα in human hepatoma cells via ChIP-chip analysis. Nucleic Acids Research, 2010, 38, 2839-2850.	6.5	112
32	Molecular basis of the selective activity of vitamin D analogues. Journal of Cellular Biochemistry, 2003, 88, 274-281.	1.2	105
33	Current Understanding of the Function of the Nuclear Vitamin D Receptor in Response to Its Natural and Synthetic Ligands. Recent Results in Cancer Research, 2003, 164, 29-42.	1.8	104
34	Inactivation of zinc finger transcription factors provides a mechanism for a gene regulatory role of nitric oxide. FASEB Journal, 2000, 14, 166-173.	0.2	101
35	Cyclical Chromatin Looping and Transcription Factor Association on the Regulatory Regions of the p21 (CDKN1A) Gene in Response to 1α,25-Dihydroxyvitamin D3. Journal of Biological Chemistry, 2009, 284, 8073-8082.	1.6	99
36	Selective use of multiple vitamin D response elements underlies the 1 Â,25-dihydroxyvitamin D3-mediated negative regulation of the human CYP27B1 gene. Nucleic Acids Research, 2007, 35, 2734-2747.	6.5	97

#	Article	IF	CITATIONS
37	Identification of Natural Monomeric Response Elements of the Nuclear Receptor RZR/ROR. THEY ALSO BIND COUP-TF HOMODIMERS. Journal of Biological Chemistry, 1996, 271, 19732-19736.	1.6	96
38	The Human Hyaluronan Synthase 2 Gene Is a Primary Retinoic Acid and Epidermal Growth Factor Responding Gene. Journal of Biological Chemistry, 2005, 280, 14636-14644.	1.6	94
39	Epigenome-wide effects of vitamin D and their impact on the transcriptome of human monocytes involve CTCF. Nucleic Acids Research, 2016, 44, 4090-4104.	6.5	94
40	Thiazolidine Diones, Specific Ligands of the Nuclear Receptor Retinoid Z Receptor/Retinoid Acid Receptor-related Orphan Receptor α with Potent Antiarthritic Activity. Journal of Biological Chemistry, 1996, 271, 13515-13522.	1.6	93
41	Current Status of Vitamin D Signaling and Its Therapeutic Applications. Current Topics in Medicinal Chemistry, 2012, 12, 528-547.	1.0	92
42	Tracing the molecular basis of transcriptional dynamics in noisy data by using an experiment-based mathematical model. Nucleic Acids Research, 2015, 43, 153-161.	6.5	88
43	Regulation of multiple insulin-like growth factor binding protein genes by 1Â,25-dihydroxyvitamin D3. Nucleic Acids Research, 2005, 33, 5521-5532.	6.5	87
44	1,25-dihydroxyvitamin D3 influences cellular homocysteine levels in murine preosteoblastic MC3T3-E1 cells by direct regulation of cystathionine β-synthase. Journal of Bone and Mineral Research, 2011, 26, 2991-3000.	3.1	87
45	Primary Vitamin D Target Genes Allow a Categorization of Possible Benefits of Vitamin D3 Supplementation. PLoS ONE, 2013, 8, e71042.	1.1	87
46	Vitamin D receptor(s): In the nucleus but also at membranes?. Experimental Dermatology, 2020, 29, 876-884.	1.4	83
47	A genomic perspective on vitamin D signaling. Anticancer Research, 2009, 29, 3485-93.	0.5	83
48	Differential apoptotic response of human melanoma cells to 1α,25-dihydroxyvitamin D3 and its analogues. Cell Death and Differentiation, 1998, 5, 946-952.	5.0	81
49	Sensitive induction of apoptosis in breast cancer cells by a novel 1,25-dihydroxyvitamin D3 analogue shows relation to promoter selectivity. , 1997, 66, 552-562.		79
50	Modulation of Mouse and Human Phenobarbital-Responsive Enhancer Module by Nuclear Receptors. Molecular Pharmacology, 2002, 62, 366-378.	1.0	79
51	Three Members of the Human Pyruvate Dehydrogenase Kinase Gene Family Are Direct Targets of the Peroxisome Proliferator-activated Receptor β/δ. Journal of Molecular Biology, 2007, 372, 341-355.	2.0	79
52	Different Molecular Mechanisms of Vitamin D ₃ Receptor Antagonists. Molecular Pharmacology, 2001, 59, 1478-1485.	1.0	74
53	Vitamin D and Its Synthetic Analogs. Journal of Medicinal Chemistry, 2019, 62, 6854-6875.	2.9	74
54	Inhibition of cytokine secretion from adipocytes by 1,25â€dihydroxyvitamin D ₃ <i>via</i> the NFâ€₽B pathway. FASEB Journal, 2012, 26, 4400-4407.	0.2	72

#	Article	IF	CITATIONS
55	Primary effect of 1α,25(OH)2D3 on IL-10 expression in monocytes is short-term down-regulation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 1276-1286.	1.9	71
56	Molecular endocrinology of vitamin D on the epigenome level. Molecular and Cellular Endocrinology, 2017, 453, 14-21.	1.6	70
57	Zinc Finger Transcription Factors as Molecular Targets for Nitric Oxide-mediated Immunosuppression: Inhibition of IL-2 Gene Expression in Murine Lymphocytes. Molecular Medicine, 1999, 5, 721-730.	1.9	69
58	Genome-wide landscape of liver X receptor chromatin binding and gene regulation in human macrophages. BMC Genomics, 2012, 13, 50.	1.2	69
59	Differential effects of 1α,25-dihydroxycholecalciferol on MCP-1 and adiponectin production in human white adipocytes. European Journal of Nutrition, 2012, 51, 335-342.	1.8	68
60	Primary Vitamin D Target Genes of Human Monocytes. Frontiers in Physiology, 2019, 10, 194.	1.3	68
61	Vitamin D and evolution: Pharmacologic implications. Biochemical Pharmacology, 2020, 173, 113595.	2.0	68
62	Identification of Pregnane X Receptor Binding Sites in the Regulatory Regions of Genes Involved in Bile Acid Homeostasis. Journal of Molecular Biology, 2005, 346, 505-519.	2.0	67
63	Vitamin D Signaling in the Context of Innate Immunity: Focus on Human Monocytes. Frontiers in Immunology, 2019, 10, 2211.	2.2	67
64	The Down-regulation of the Human MYC Gene by the Nuclear Hormone 1α,25-dihydroxyvitamin D3 is Associated with Cycling of Corepressors and Histone Deacetylases. Journal of Molecular Biology, 2010, 400, 284-294.	2.0	66
65	Meta-analysis of primary target genes of peroxisome proliferator-activated receptors. Genome Biology, 2007, 8, R147.	13.9	65
66	Epigenetic control of a VDR-governed feed-forward loop that regulates p21 (waf1/cip1) expression and function in non-malignant prostate cells. Nucleic Acids Research, 2011, 39, 2045-2056.	6.5	65
67	Dataset integration identifies transcriptional regulation of microRNA genes by PPARÎ ³ in differentiating mouse 3T3-L1 adipocytes. Nucleic Acids Research, 2012, 40, 4446-4460.	6.5	65
68	Key Vitamin D Target Genes with Functions in the Immune System. Nutrients, 2020, 12, 1140.	1.7	64
69	All natural DR3-type vitamin D response elements show a similar functionality in vitro. Biochemical Journal, 2000, 352, 301-309.	1.7	64
70	Relevance of Vitamin D Receptor Target Genes for Monitoring the Vitamin D Responsiveness of Primary Human Cells. PLoS ONE, 2015, 10, e0124339.	1.1	64
71	The first genome-wide view of vitamin D receptor locations and their mechanistic implications. Anticancer Research, 2012, 32, 271-82.	0.5	64
72	Antagonistic Action of a 25-Carboxylic Ester Analogue of 1α,25-Dihydroxyvitamin D3 Is Mediated by a Lack of Ligand-induced Vitamin D Receptor Interaction with Coactivators. Journal of Biological Chemistry, 2000, 275, 16506-16512.	1.6	63

#	Article	IF	CITATIONS
73	The vitamin D3 receptor in the context of the nuclear receptor superfamily. Endocrine, 1996, 4, 91-105.	2.2	62
74	Regulation of the human cyclin C gene via multiple vitamin D3-responsive regions in its promoter. Nucleic Acids Research, 2005, 33, 2440-2451.	6.5	62
75	Structural Determinants of the Agonist-independent Association of Human Peroxisome Proliferator-activated Receptors with Coactivators. Journal of Biological Chemistry, 2005, 280, 26543-26556.	1.6	62
76	Distinct HDACs regulate the transcriptional response of human cyclin-dependent kinase inhibitor genes to trichostatin A and 1α,25-dihydroxyvitamin D 3. Nucleic Acids Research, 2008, 36, 121-132.	6.5	62
77	Carboxylic ester antagonists of 1α,25-dihydroxyvitamin D3 show cell-specific actions. Chemistry and Biology, 2000, 7, 885-894.	6.2	59
78	Central role of VDR conformations for understanding selective actions of vitamin D3 analogues. Steroids, 2001, 66, 213-221.	0.8	59
79	Critical role of helix 12 of the vitamin D 3 receptor for the partial agonism of carboxylic ester antagonists 1 1Edited by R. Huber. Journal of Molecular Biology, 2002, 315, 229-238.	2.0	59
80	Characterization of DNA Complexes Formed by the Nuclear Receptor Constitutive Androstane Receptor. Journal of Biological Chemistry, 2003, 278, 43299-43310.	1.6	59
81	Functional characterization of vitamin D responding regions in the human 5-Lipoxygenase gene. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 864-872.	1.2	59
82	Dynamics of 1α,25-dihydroxyvitamin D3-dependent chromatin accessibility of early vitamin D receptor target genes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 1266-1275.	0.9	59
83	The physiology of vitamin Dââ,¬â€ f ar more than calcium and bone. Frontiers in Physiology, 2014, 5, 335.	1.3	59
84	In vivo response of the human epigenome to vitamin D: A Proof-of-principle study. Journal of Steroid Biochemistry and Molecular Biology, 2018, 180, 142-148.	1.2	59
85	RXR-dependent and RXR-independent transactivation by retinoic acid receptors. Nucleic Acids Research, 1993, 21, 1231-1237.	6.5	58
86	Functional Characterization of a 1,25-Dihydroxyvitamin D3Receptor Binding Site Found in the Rat Atrial Natriuretic Factor Promoter. Biochemical and Biophysical Research Communications, 1996, 218, 882-886.	1.0	58
87	Structure Activity Relationship of Carboxylic Ester Antagonists of the Vitamin D ₃ Receptor. Molecular Pharmacology, 2000, 58, 1067-1074.	1.0	58
88	Ligand-triggered stabilization of vitamin D Receptor/Retinoid X receptor heterodimer conformations on DR4-type response elements. Journal of Molecular Biology, 2000, 296, 743-756.	2.0	58
89	The Insulin-like Growth Factor-binding Protein 1 Gene Is a Primary Target of Peroxisome Proliferator-activated Receptors. Journal of Biological Chemistry, 2006, 281, 39607-39619.	1.6	57
90	Cellular Content of UDP-N-acetylhexosamines Controls Hyaluronan Synthase 2 Expression and Correlates with O-Linked N-Acetylglucosamine Modification of Transcription Factors YY1 and SP1. Journal of Biological Chemistry, 2011, 286, 33632-33640.	1.6	56

#	Article	IF	CITATIONS
91	Vitamin D receptor 2016: novel ligands and structural insights. Expert Opinion on Therapeutic Patents, 2016, 26, 1291-1306.	2.4	56
92	Selective regulation of biological processes by vitamin D based on the spatio-temporal cistrome of its receptor. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 952-961.	0.9	56
93	The impact of the vitamin D-modulated epigenome on VDR target gene regulation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 697-705.	0.9	56
94	Response element selectivity for heterodimerization of vitamin D receptors with retinoic acid and retinoid X receptors. Journal of Molecular Endocrinology, 1994, 12, 327-339.	1.1	55
95	Orphan nuclear receptor binding site in the human inducible nitric oxide synthase promoter mediates responsiveness to steroid and xenobiotic ligands. Journal of Cellular Biochemistry, 2002, 85, 72-82.	1.2	53
96	Vitamin D Genomics: From In Vitro to In Vivo. Frontiers in Endocrinology, 2018, 9, 250.	1.5	53
97	In vivo transcriptome changes of human white blood cells in response to vitamin D. Journal of Steroid Biochemistry and Molecular Biology, 2019, 188, 71-76.	1.2	53
98	Vitamin D receptor signaling improves Hutchinson-Gilford progeria syndrome cellular phenotypes. Oncotarget, 2016, 7, 30018-30031.	0.8	53
99	The 1,25-dihydroxyvitamin D3 (VD) analogues MC903, EB1089 and KH1060 activate the VD receptor: Homodimers show higher ligand sensitivity than heterodimers with retinoid X receptors. Journal of Steroid Biochemistry and Molecular Biology, 1994, 51, 137-142.	1.2	52
100	Vitamin D Receptor Agonists Specifically Modulate the Volume of the Ligand-binding Pocket. Journal of Biological Chemistry, 2006, 281, 10516-10526.	1.6	52
101	Dynamics of nuclear receptor target gene regulation. Chromosoma, 2010, 119, 479-484.	1.0	52
102	Vitamin D and Its Target Genes. Nutrients, 2022, 14, 1354.	1.7	52
103	Identification of a Vitamin D Receptor Homodimer-Type Response Element in the Rat Calcitriol 24-Hydroxylase Gene Promoter. Biochemical and Biophysical Research Communications, 1994, 202, 1366-1372.	1.0	51
104	Selective Recognition of Vitamin D Receptor Conformations Mediates Promoter Selectivity of Vitamin D Analogs. Molecular Pharmacology, 1999, 55, 1077-1087.	1.0	51
105	Vitamin D receptor ligands: the impact of crystal structures. Expert Opinion on Therapeutic Patents, 2012, 22, 417-435.	2.4	50
106	Identification of a vitamin D3 response element in the fibronectin gene that is bound by a vitamin D3 receptor homodimer. Journal of Cellular Biochemistry, 1996, 60, 322-333.	1.2	48
107	Peroxisome proliferator-activated receptor $\hat{\Gamma}$ is a specific sensor for teratogenic valproic acid derivatives. European Journal of Pharmacology, 2001, 431, 25-33.	1.7	48
108	Healthy Nordic diet downregulates the expression of genes involved in inflammation in subcutaneous adipose tissue in individuals with features of the metabolic syndrome. American Journal of Clinical Nutrition, 2015, 101, 228-239.	2.2	48

#	Article	IF	CITATIONS
109	Epigenomic PU.1-VDR crosstalk modulates vitamin D signaling. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 405-415.	0.9	48
110	An Integrated Biological Approach to Nuclear Receptor Signaling in Physiological Control and Disease. Critical Reviews in Eukaryotic Gene Expression, 2006, 16, 1-22.	0.4	47
111	RXR-Independent Action of the Receptors for Thyroid Hormone, Retinoid Acid and Vitamin D on Inverted Palindromes. Biochemical and Biophysical Research Communications, 1993, 195, 1345-1353.	1.0	44
112	Potentiation by vitamin D analogs of TNFα and ceramide-induced apoptosis in MCF-7 cells is associated with activation of cytosolic phospholipase A2. Cell Death and Differentiation, 1999, 6, 890-901.	5.0	44
113	Agonist-triggered Modulation of the Activated and Silent State of the Vitamin D3 Receptor by Interaction with Co-repressors and Co-activators. Journal of Molecular Biology, 2000, 304, 793-801.	2.0	44
114	Dissecting high from low responders in a vitamin D3 intervention study. Journal of Steroid Biochemistry and Molecular Biology, 2015, 148, 275-282.	1.2	44
115	Epigenetic corruption of VDR signalling in malignancy. Anticancer Research, 2006, 26, 2557-66.	0.5	44
116	Positive and negative interaction of 1,25-dihydroxyvitamin D3 and the retinoid CD437 in the induction of human melanoma cell apoptosis. , 1999, 81, 467-470.		43
117	Gene Regulatory Potential of Nonsteroidal Vitamin D Receptor Ligands. Molecular Endocrinology, 2005, 19, 2060-2073.	3.7	43
118	Antagonist- and Inverse Agonist-Driven Interactions of the Vitamin D Receptor and the Constitutive Androstane Receptor with Corepressor Protein. Molecular Endocrinology, 2005, 19, 2258-2272.	3.7	43
119	Mechanism of 1α,25-dihydroxyvitamin D3-dependent repression of interleukin-12B. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 810-818.	1.9	43
120	Vitamin D receptor signaling and its therapeutic implications: Genome-wide and structural view. Canadian Journal of Physiology and Pharmacology, 2015, 93, 311-318.	0.7	43
121	Molecular evaluation of vitamin D responsiveness of healthy young adults. Journal of Steroid Biochemistry and Molecular Biology, 2017, 174, 314-321.	1.2	43
122	Functional Characterization of a Novel Type of 1α,25-Dihydroxyvitamin D3Response Element Identified in the Mouse c-fosPromoter. Biochemical and Biophysical Research Communications, 1997, 230, 646-651.	1.0	42
123	Identification and Characterization of a Vitamin D ₃ Response Element of Chicken Carbonic Anhydrase-II. DNA and Cell Biology, 1994, 13, 1181-1187.	0.9	41
124	Integration of the Activation of the Human Hyaluronan Synthase 2 Gene Promoter by Common Cofactors of the Transcription Factors Retinoic Acid Receptor and Nuclear Factor κB. Journal of Biological Chemistry, 2007, 282, 11530-11539.	1.6	41
125	The Vitamin D Receptor. Dermatologic Clinics, 2007, 25, 515-523.	1.0	41
126	Changes in vitamin D target gene expression in adipose tissue monitor the vitamin D response of human individuals. Molecular Nutrition and Food Research, 2014, 58, 2036-2045.	1.5	41

#	Article	IF	CITATIONS
127	Molecular Approaches for Optimizing Vitamin D Supplementation. Vitamins and Hormones, 2016, 100, 255-271.	0.7	41
128	Lipid soluble vitamins in gene regulation. BioFactors, 1999, 10, 91-97.	2.6	40
129	Regulation of the Hyaluronan Synthase 2 Gene by Convergence in Cyclic AMP Response Element-binding Protein and Retinoid Acid Receptor Signaling. Journal of Biological Chemistry, 2009, 284, 18270-18281.	1.6	40
130	Primary 1,25-Dihydroxyvitamin D3 Response of the Interleukin 8 Gene Cluster in Human Monocyte- and Macrophage-Like Cells. PLoS ONE, 2013, 8, e78170.	1.1	40
131	An aryl hydrocarbon receptor conformation acts as the functional core of nuclear dioxin signaling. Nucleic Acids Research, 2000, 28, 2286-2291.	6.5	38
132	Detailed Molecular Understanding of Agonistic and Antagonistic Vitamin D Receptor Ligands. Current Topics in Medicinal Chemistry, 2006, 6, 1243-1253.	1.0	38
133	Thyroid Hormone and Retinoic Acid Receptors Form Heterodimers with Retinoid X Receptors on Direct Repeats, Palindromes, and Inverted Palindromes. DNA and Cell Biology, 1994, 13, 333-341.	0.9	37
134	Differential nuclear receptor signalling from DR4-type response elements. Journal of Cellular Biochemistry, 2002, 86, 601-612.	1.2	37
135	New vitamin D receptor ligands. Expert Opinion on Therapeutic Patents, 2003, 13, 761-772.	2.4	37
136	The Number of Vitamin D Receptor Binding Sites Defines the Different Vitamin D Responsiveness of the CYP24 Gene in Malignant and Normal Mammary Cells. Journal of Biological Chemistry, 2010, 285, 24174-24183.	1.6	37
137	Vitamin D-dependent chromatin association of CTCF in human monocytes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 1380-1388.	0.9	37
138	The vitamin D-dependent transcriptome of human monocytes. Journal of Steroid Biochemistry and Molecular Biology, 2016, 164, 180-187.	1.2	37
139	Molecular Evaluation of Vitamin D3 Receptor Agonists Designed for Topical Treatment of Skin Diseases11The authors declared not to have conflict of interest. Journal of Investigative Dermatology, 2001, 116, 785-792.	0.3	36
140	Vitamin D and the risk for cancer: A molecular analysis. Biochemical Pharmacology, 2022, 196, 114735.	2.0	36
141	The High Affinity Ligand Binding Conformation of the Nuclear 1,25-dihydroxyvitamin D3 Receptor is Functionally Linked to the Transactivation Domain 2 (AF-2). Nucleic Acids Research, 1996, 24, 4513-4518.	6.5	35
142	Coordinate induction of PPARα and SREBP2 in multifunctional protein 2 deficient mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 694-702.	1.2	35
143	Integration of VDR genome wide binding and GWAS genetic variation data reveals co-occurrence of VDR and NF-I®B binding that is linked to immune phenotypes. BMC Genomics, 2017, 18, 132.	1.2	35
144	Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily Journal of Biological Chemistry, 1997, 272, 16707.	1.6	34

#	Article	IF	CITATIONS
145	The role of the T-box for the function of the vitamin D receptor on different types of response elements. Nucleic Acids Research, 1998, 26, 5372-5378.	6.5	33
146	Ligand-mediated conformational changes of the VDR are required for gene transactivation. Journal of Steroid Biochemistry and Molecular Biology, 2004, 89-90, 227-232.	1.2	33
147	Modulation of vitamin D signaling by the pioneer factor CEBPA. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 96-106.	0.9	33
148	Interaction of Two Novel 14-Epivitamin D3 Analogs with Vitamin D3 Receptor-Retinoid X Receptor Heterodimers on Vitamin D3 Responsive Elements. Journal of Bone and Mineral Research, 2001, 16, 625-638.	3.1	32
149	Corepressor Excess Shifts the Two-Side Chain Vitamin D Analog Gemini from an Agonist to an Inverse Agonist of the Vitamin D Receptor. Molecular Endocrinology, 2003, 17, 2028-2038.	3.7	32
150	A Structural Basis for the Species-Specific Antagonism of 26,23-Lactones on Vitamin D Signaling. Chemistry and Biology, 2004, 11, 1147-1156.	6.2	32
151	A Role for the PPAR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi>in Cancer Therapy. PPAR Research, 2008, 2008, 1-17.</mml:math 	1.1	32
152	Design principles of nuclear receptor signaling: how complex networking improves signal transduction. Molecular Systems Biology, 2010, 6, 446.	3.2	32
153	Primary vitamin D receptor target genes as biomarkers for the vitamin D3 status in the hematopoietic system. Journal of Nutritional Biochemistry, 2014, 25, 875-884.	1.9	32
154	Functional conformations of the nuclear 1α,25-dihydroxyvitamin D3 receptor. Biochemical Journal, 1997, 327, 561-568.	1.7	31
155	The Critical Role of Carboxy-Terminal Amino Acids in Ligand-Dependent and -Independent Transactivation of the Constitutive Androstane Receptor. Molecular Endocrinology, 2003, 17, 234-246.	3.7	31
156	Skin colour and vitamin D: An update. Experimental Dermatology, 2020, 29, 864-875.	1.4	31
157	Vitamin D: A Micronutrient Regulating Genes. Current Pharmaceutical Design, 2019, 25, 1740-1746.	0.9	31
158	Cross-repression, a Functional Consequence of the Physical Interaction of Non-liganded Nuclear Receptors and POU Domain Transcription Factors. Journal of Biological Chemistry, 2002, 277, 18501-18509.	1.6	30
159	The highly conserved region of the co-repressor Sin3A functionally interacts with the co-repressor Alien. Nucleic Acids Research, 2004, 32, 2995-3004.	6.5	30
160	The genes of the coactivator TIF2 and the corepressor SMRT are primary 1α,25(OH)2D3 targets. Journal of Steroid Biochemistry and Molecular Biology, 2004, 89-90, 257-260.	1.2	30
161	Controlling the chromatin organization of vitamin D target genes by multiple vitamin D receptor binding sites. Journal of Steroid Biochemistry and Molecular Biology, 2007, 103, 338-343.	1.2	30
162	Gene regulatory potential of 1?,25-dihydroxyvitamin D3 analogues with two side chains. Journal of Cellular Biochemistry, 2001, 81, 179-190.	1.2	29

#	Article	IF	CITATIONS
163	Variations in the Ghrelin Receptor Gene Associate with Obesity and Glucose Metabolism in Individuals with Impaired Glucose Tolerance. PLoS ONE, 2008, 3, e2941.	1.1	29
164	Characterization of Genomic Vitamin D Receptor Binding Sites through Chromatin Looping and Opening. PLoS ONE, 2014, 9, e96184.	1.1	29
165	9- <i>cis</i> -retinoic acid is a natural antagonist for the retinoic acid receptor response pathway. Biochemical Journal, 1993, 295, 343-346.	1.7	28
166	Structural Evaluation of the Agonistic Action of a Vitamin D Analog with Two Side Chains Binding to the Nuclear Vitamin D Receptor. Molecular Pharmacology, 2003, 63, 1230-1237.	1.0	28
167	The ASAP2 gene is a primary target of 1,25-dihydroxyvitamin D3 in human monocytes and macrophages. Journal of Steroid Biochemistry and Molecular Biology, 2014, 144, 12-18.	1.2	28
168	A hierarchical regulatory network analysis of the vitamin D induced transcriptome reveals novel regulators and complete VDR dependency in monocytes. Scientific Reports, 2021, 11, 6518.	1.6	28
169	All natural DR3-type vitamin D response elements show a similar functionality in vitro. Biochemical Journal, 2000, 352, 301.	1.7	27
170	Cyclical regulation of the insulin-like growth factor binding protein 3 gene in response to 11±,25-dihydroxyvitamin D 3. Nucleic Acids Research, 2011, 39, 502-512.	6.5	27
171	Vitamin D Signaling Suppresses Early Prostate Carcinogenesis in TgAPT121 Mice. Cancer Prevention Research, 2019, 12, 343-356.	0.7	27
172	Genome-wide effects of chromatin on vitamin D signaling. Journal of Molecular Endocrinology, 2020, 64, R45-R56.	1.1	27
173	Time-Resolved Expression Profiling of the Nuclear Receptor Superfamily in Human Adipogenesis. PLoS ONE, 2010, 5, e12991.	1.1	26
174	The transcriptional regulator BCL6 participates in the secondary gene regulatory response to vitamin D. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 300-308.	0.9	26
175	ETS transcription factor family member GABPA contributes to vitamin D receptor target gene regulation. Journal of Steroid Biochemistry and Molecular Biology, 2018, 177, 46-52.	1.2	26
176	Analysis of the 5-lipoxygenase promoter and characterization of a vitamin D receptor binding site. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 686-697.	1.2	25
177	Multiplex Eukaryotic Transcription (In)activation: Timing, Bursting and Cycling of a Ratchet Clock Mechanism. PLoS Computational Biology, 2015, 11, e1004236.	1.5	25
178	The impact of chromatin organization of vitamin D target genes. Anticancer Research, 2006, 26, 2637-45.	0.5	25
179	Common and personal target genes of the micronutrient vitamin D in primary immune cells from human peripheral blood. Scientific Reports, 2020, 10, 21051.	1.6	23
180	Agonist-dependent and Agonist-independent Transactivations of the Human Constitutive Androstane Receptor Are Modulated by Specific Amino Acid Pairs. Journal of Biological Chemistry, 2004, 279, 33558-33566.	1.6	22

#	Article	IF	CITATIONS
181	Gene Regulatory Scenarios of Primary 1,25-Dihydroxyvitamin D3 Target Genes in a Human Myeloid Leukemia Cell Line. Cancers, 2013, 5, 1221-1241.	1.7	22
182	Orphan nuclear receptor binding site in the human inducible nitric oxide synthase promoter mediates responsiveness to steroid and xenobiotic ligands. Journal of Cellular Biochemistry, 2002, 85, 72-82.	1.2	22
183	Effects of a healthy Nordic diet on gene expression changes in peripheral blood mononuclear cells in response to an oral glucose tolerance test in subjects with metabolic syndrome: a SYSDIET sub-study. Genes and Nutrition, 2016, 11, 3.	1.2	20
184	Time-Resolved Gene Expression Analysis Monitors the Regulation of Inflammatory Mediators and Attenuation of Adaptive Immune Response by Vitamin D. International Journal of Molecular Sciences, 2022, 23, 911.	1.8	20
185	Potent gene regulatory and antiproliferative activities of 20-methyl analogues of 1,25 dihydroxyvitamin D3. , 1996, 63, 199-206.		19
186	Molecular mechanism of allosteric communication in the human PPARαâ€RXRα heterodimer. Proteins: Structure, Function and Bioinformatics, 2010, 78, 873-887.	1.5	19
187	The gene for the transcription factor BHLHE40/DEC1/stra13 is a dynamically regulated primary target of the vitamin D receptor. Journal of Steroid Biochemistry and Molecular Biology, 2013, 136, 62-67.	1.2	19
188	Allosteric interaction of the 1Â,25-dihydroxyvitamin D3 receptor and the retinoid X receptor on DNA. Nucleic Acids Research, 1997, 25, 4307-4313.	6.5	18
189	1α,25-Dihydroxyvitamin D3 receptor as a mediator of transrepression of retinoid signaling. , 1997, 67, 287-296.		18
190	Cyclin C is a primary 1?,25-dihydroxyvitamin D3 responding gene. Journal of Cellular Biochemistry, 2000, 77, 75-81.	1.2	17
191	Human Epigenomics. , 2018, , .		17
192	Using chromatin immunoprecipitation to monitor 1α,25-dihydroxyvitamin D3-dependent chromatin activity on the human CYP24 promoter. Journal of Steroid Biochemistry and Molecular Biology, 2004, 89-90, 277-279.	1.2	16
193	Machine learning approaches infer vitamin D signaling: Critical impact of vitamin D receptor binding within topologically associated domains. Journal of Steroid Biochemistry and Molecular Biology, 2019, 185, 103-109.	1.2	16
194	An Isocaloric Nordic Diet Modulates RELA and TNFRSF1A Gene Expression in Peripheral Blood Mononuclear Cells in Individuals with Metabolic Syndrome—A SYSDIET Sub-Study. Nutrients, 2019, 11, 2932.	1.7	16
195	The need for education in personalized medicine. Personalized Medicine, 2012, 9, 147-150.	0.8	15
196	Mechanisms of Gene Regulation. , 2016, , .		15
197	High-affinity nuclear receptor binding of 20-epi analogues of 1,25-dihydroxyvitamin D3 correlates well with gene activation. , 1996, 62, 325-333.		14
198	What do we learn from the genome-wide perspective on vitamin D3?. Anticancer Research, 2015, 35, 1143-51.	0.5	14

#	Article	IF	CITATIONS
199	Subcellular localisation of BAG-1 and its regulation of vitamin D receptor-mediated transactivation and involucrin expression in oral keratinocytes: Implications for oral carcinogenesis. Experimental Cell Research, 2007, 313, 3222-3238.	1.2	13
200	Effects of a healthy Nordic diet on plasma 25-hydroxyvitamin D concentration in subjects with metabolic syndrome: a randomized, placebo-controlled trial (SYSDIET). European Journal of Nutrition, 2014, 53, 1123-1134.	1.8	13
201	The potent anti-proliferative effect of 20-EPI analogues of 1,25 dihydroxyvitamin D3 in human breast-cancer MCF-7 cells is related to promoter selectivity. , 1996, 67, 739-742.		12
202	Nuclear Signalling of Melatonin. , 1997, 23, 25-35.		11
203	Metabolism of the vitamin D3 analogue EB1089 alters receptor complex formation and reduces promoter selectivity. British Journal of Pharmacology, 1998, 125, 607-614.	2.7	11
204	Melatonin receptor ligands. Expert Opinion on Therapeutic Patents, 1999, 9, 281-290.	2.4	11
205	Cell Cycle Regulatory Effects of Retinoic Acid and Forskolin Are Mediated by the Cyclin C Gene. Journal of Molecular Biology, 2009, 393, 261-271.	2.0	11
206	Transcriptome-Wide Profile of 25-Hydroxyvitamin D3 in Primary Immune Cells from Human Peripheral Blood. Nutrients, 2021, 13, 4100.	1.7	11
207	Mechanisms of Nuclear Signalling by Vitamin D3. Interplay with Retinoid and Thyroid Hormone Signalling. FEBS Journal, 1995, 231, 517-527.	0.2	10
208	Inhibitory effect of uremic solutions on protein-DNA-complex formation of the vitamin D receptor and other members of the nuclear receptor superfamily. Journal of Cellular Biochemistry, 1999, 74, 386-394.	1.2	10
209	Healthy Nordic Diet Modulates the Expression of Genes Related to Mitochondrial Function and Immune Response in Peripheral Blood Mononuclear Cells from Subjects with Metabolic Syndrome–A SYSDIET Sub‣tudy. Molecular Nutrition and Food Research, 2019, 63, e1801405.	1.5	10
210	Vitamin D Treatment Sequence Is Critical for Transcriptome Modulation of Immune Challenged Primary Human Cells. Frontiers in Immunology, 2021, 12, 754056.	2.2	10
211	Endocrine functions of vitamin D. Molecular and Cellular Endocrinology, 2017, 453, 1-2.	1.6	9
212	The impact of transcriptional cycling on gene regulation. Transcription, 2010, 1, 13-16.	1.7	8
213	Gene-Regulatory Potential of 25-Hydroxyvitamin D3 and D2. Frontiers in Nutrition, 0, 9, .	1.6	8
214	Randomized controlled trial on the effectiveness of webâ€based Genomics Nursing Education Intervention for undergraduate nursing students: a study protocol. Journal of Advanced Nursing, 2020, 76, 3136-3146.	1.5	7
215	The Antiproliferative Effect of Vitamin D ₃ Analogues. Dermatology, 1996, 192, 195-197.	0.9	6
216	Structural variants of the vitamin D analogue EB1089 reduce its ligand sensitivity and promoter selectivity. , 1998, 71, 340-350.		6

2

#	Article	IF	CITATIONS
217	Single thyroid hormone receptor monomers are competent for co-activator-mediated transactivation. Biochemical Journal, 2001, 360, 387.	1.7	6
218	Single thyroid hormone receptor monomers are competent for co-activator-mediated transactivation. Biochemical Journal, 2001, 360, 387-393.	1.7	6
219	Identification of Two Activating Elements in the Proximal Promoter Region of the Human Glutathione Transferase-A1 and -A2 Genes. Archives of Biochemistry and Biophysics, 1998, 359, 122-127.	1.4	5
220	From pharmacogenomics to integrated personal omics profiling: a gap in implementation into healthcare. Personalized Medicine, 2014, 11, 625-629.	0.8	5
221	Human Epigenetics: How Science Works. , 2019, , .		5
222	Impact of Epigenetics on Complications of Fanconi Anemia: The Role of Vitamin D-Modulated Immunity. Nutrients, 2020, 12, 1355.	1.7	5
223	Nutrigenomics: How Science Works. , 2020, , .		5
224	Molecular Basis of the Diversity of Vitamin D Target Genes. , 2005, , 313-325.		5
225	The Induction and Functions of Murine T-Helper Cell Subsets. Journal of Investigative Dermatology, 1995, 105, S8-S13.	0.3	4
226	Screening for PPAR Responsive Regulatory Modules in Cancer. PPAR Research, 2008, 2008, 1-8.	1.1	4
227	Highlights from the 5th International Conference on Vitamin D Deficiency, Nutrition and Human Health, Abu Dhabi, United Arab Emirates, March 24–25, 2016. Journal of Steroid Biochemistry and Molecular Biology, 2018, 175, 1-3.	1.2	4
228	Cancer Biology: How Science Works. , 2021, , .		4
229	The Induction and Functions of Murine T-Helper Cell Subsets Journal of Investigative Dermatology, 1995, 105, 8S-13S.	0.3	4
230	Replacing Saturated Fat with Polyunsaturated Fat Modulates Peripheral Blood Mononuclear Cell Gene Expression and Pathways Related to Cardiovascular Disease Risk Using a Whole Transcriptome Approach. Molecular Nutrition and Food Research, 2021, 65, e2100633.	1.5	4
231	Vitamin D and Pigmented Skin. Nutrients, 2022, 14, 325.	1.7	4
232	Sequencin refractory GC rich regions in plasmid DNA. Nucleic Acids Research, 1987, 15, 2779-2779.	6.5	2
233	Dynamic nature of transcriptional regulation of nuclear receptor target genes in the context of chromatin organization. Dermato-Endocrinology, 2011, 3, 125-129.	1.9	2

234 Target Genes of Vitamin D. , 2011, , 211-226.

#	Article	IF	CITATIONS
235	The Histone Code. , 2018, , 75-88.		2
236	Highlights from the 6 th International Conference on Vitamin D Deficiency, "Nutrition and Human Healthâ€; Abu Dhabi, United Arab Emirates, March 9-10, 2017. Journal of Steroid Biochemistry and Molecular Biology, 2018, 180, 1-3.	1.2	2
237	Dynamic nature of transcriptional regulation of nuclear receptor target genes in the context of chromatin organization. Dermato-Endocrinology, 2011, 3, 125-9.	1.9	2
238	Inhibitory effect of uremic solutions on protein-DNA-complex formation of the vitamin D receptor and other members of the nuclear receptor superfamily. Journal of Cellular Biochemistry, 1999, 74, 386-94.	1.2	2
239	Molecular Immunology. , 2022, , .		2
240	Nutrition and Common Diseases. , 2016, , 3-23.		1
241	Overview: What Is Gene Expression?. , 2016, , 3-16.		1
242	DNA Methylation. , 2018, , 57-73.		1
243	Monitoring genome-wide chromatin accessibility by formaldehyde-assisted isolation of regulatory elements sequencing (FAIRE-seq). , 2020, , 353-369.		1
244	Hypertension, Atherosclerosis and Dyslipidemias. , 2016, , 195-208.		1
245	The Impact of Chromatin. , 2016, , 17-34.		1
246	A functional approach to the mapping of structural polymorphisms in superhelical DNA. Biochemical Pharmacology, 1988, 37, 1847-1848.	2.0	0
247	Antiproliferative response of two human primary melanoma cell lines to 1,25-dihydroxyvitamin D3 and its analogues. Journal of Dermatological Science, 1998, 16, S102.	1.0	0
248	New Insights to Nuclear Receptor Gene Regulation from Analysis of their Response Elements in Target Genes. , 2010, , 419-437.		0
249	Clarification for <i>The impact of transcriptional cycling on gene regulation</i> . Transcription, 2011, 2, 50-50.	1.7	0
250	Sensing Nutrition. , 2016, , 47-69.		0
251	Chronic Inflammation and Metabolic Stress. , 2016, , 121-137.		0
252	Adaption of the Human Genome to Dietary Changes. , 2016, , 71-86.		0

#	Article	IF	CITATIONS
253	Nutritional Epigenomics. , 2016, , 87-104.		0
254	Glucose Homeostasis, Insulin Resistance and \hat{I}^2 Cell Failure. , 2016, , 163-180.		0
255	Mapping the Genome. , 2016, , 109-125.		0
256	Epigenomics of Immune Function. , 2018, , 191-204.		0
257	Nutritional Epigenomics. , 2018, , 205-217.		0
258	Methods and Applications of Epigenomics. , 2018, , 19-38.		0
259	The Structure of Chromatin. , 2018, , 41-56.		0
260	Chromatin Modifiers. , 2018, , 89-102.		0
261	Chromatin Remodelers and Organizers. , 2018, , 103-120.		0
262	Embryogenesis and Cellular Differentiation. , 2018, , 123-140.		0
263	Population Epigenomics and Aging. , 2018, , 141-158.		0
264	Vitamin D and Chromatin. , 2018, , 217-225.		0
265	Epigenome-Wide Effects of Vitamin D. Proceedings (mdpi), 2019, 11, .	0.2	0
266	Tumor Suppressor Genes and Cell Fate Control. , 2021, , 29-40.		0
267	Cancer Immunity. , 2021, , 129-146.		0
268	Architecture of Cancer Therapies. , 2021, , 147-161.		0
269	Tumor Microenvironment. , 2021, , 101-114.		0
270	Multi-step Tumorigenesis and Genome Instability. , 2021, , 41-53.		0

#	ARTICLE	IF	CITATIONS
271	Oncogenes and Signal Transduction. , 2021, , 17-28.		0
272	Introduction to Cancer. , 2021, , 1-16.		0
273	Aging and Cancer. , 2021, , 87-99.		0
274	Diversity of Vitamin D Target Genes. , 2010, , 255-274.		0
275	Switching Genes on and off: The Example of Nuclear Receptors. , 2014, , 91-104.		0
276	The Metabolic Syndrome. , 2016, , 209-222.		0
277	Switching Genes On and Off: The Example of Nuclear Receptors. , 2016, , 95-108.		0
278	Human Genomic Variation. , 2016, , 25-44.		0
279	Linking Signal Transduction and Gene Regulation. , 2016, , 75-93.		0
280	Epigenome-Environment Interactions and Their Therapy. , 2019, , 135-144.		0
281	Chromatin Modifying Proteins and RNAs. , 2019, , 51-62.		0
282	Population Epigenetics and Aging. , 2019, , 75-87.		0
283	Epigenetics of Immune Function. , 2019, , 123-134.		0
284	DNA Methylation. , 2019, , 29-39.		0
285	Nutritional Epigenetics. , 2020, , 65-79.		0
286	Regulatory Impact of Non-coding RNA. , 2020, , 129-142.		0
287	Chromatin Remodeling and Organization. , 2020, , 115-128.		0

#	Article	IF	CITATIONS
289	Insulin Resistance and Diabetes. , 2020, , 131-151.		Ο
290	Interference of the Human Genome with Nutrients. , 2020, , 49-63.		0
291	Genome-Wide Principles of Gene Regulation. , 2020, , 71-82.		0
292	A Key Transcription Factor Family: Nuclear Receptors. , 2020, , 59-70.		0