Randall V Martin

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8441543/randall-v-martin-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

43,463 205 97 355 h-index g-index citations papers 8.6 398 51,741 7.11 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
355	Global fine-scale changes in ambient NO during COVID-19 lockdowns <i>Nature</i> , 2022 , 601, 380-387	50.4	8
354	Long-term effects of PM components on incident dementia in the northeastern United States <i>Innovation(China)</i> , 2022 , 3, 100208	17.8	2
353	Global urban temporal trends in fine particulate matter (PM) and attributable health burdens: estimates from global datasets <i>Lancet Planetary Health, The</i> , 2022 ,	9.8	10
352	Critical Time Windows for Air Pollution Exposure and Birth Weight in a Multicity Canadian Pregnancy Cohort. <i>Epidemiology</i> , 2022 , 33, 7-16	3.1	1
351	Ambient air pollution and the risk of acute myocardial infarction and stroke: A national cohort study. <i>Environmental Research</i> , 2022 , 204, 111975	7.9	6
350	PM composition and disease aggravation in amyotrophic lateral sclerosis: An analysis of long-term exposure to components of fine particulate matter in New York State <i>Environmental Epidemiology</i> , 2022 , 6, e204	0.2	1
349	Long-term effects of PM components on blood pressure and hypertension in Chinese children and adolescents <i>Environment International</i> , 2022 , 161, 107134	12.9	1
348	Associations of long-term exposure to fine particulate matter and its constituents with cardiovascular mortality: A prospective cohort study in China <i>Environment International</i> , 2022 , 162, 107	138	1
347	Air Pollution in American Indian Versus Non-American Indian Communities, 2000-2018 <i>American Journal of Public Health</i> , 2022 , 112, 615-623	5.1	O
346	Ambient air pollution and acute respiratory infection in children aged under 5 lyears living in 35 developing countries. <i>Environment International</i> , 2021 , 159, 107019	12.9	2
345	Fine particles matter components and interstitial lung disease in rheumatoid arthritis <i>European Respiratory Journal</i> , 2021 ,	13.6	3
344	Inequality in historical transboundary anthropogenic PM2.5 health impacts. <i>Science Bulletin</i> , 2021 , 67, 437-437	10.6	1
343	Relating geostationary satellite measurements of aerosol optical depth (AOD) over East Asia to fine particulate matter (PM_{2.5}): insights from the KORUS-AQ aircraft campaign and GEOS-Chem model simulations. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 16775-1679	6.8 1	4
342	Societal shifts due to COVID-19 reveal large-scale complexities and feedbacks between atmospheric chemistry and climate change. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	5
341	Maternal exposure to fine particulate matter and preterm birth and low birth weight in Africa <i>Environment International</i> , 2021 , 160, 107053	12.9	O
340	Estimating Intra-Urban Inequities in PM-Attributable Health Impacts: A Case Study for Washington, DC. <i>GeoHealth</i> , 2021 , 5, e2021GH000431	5	2
339	Grid-stretching capability for the GEOS-Chem 13.0.0 atmospheric chemistry model. <i>Geoscientific Model Development</i> , 2021 , 14, 5977-5997	6.3	O

(2021-2021)

338	Changes in exposure to ambient fine particulate matter after relocating and long term survival in Canada: quasi-experimental study. <i>BMJ, The</i> , 2021 , 375, n2368	5.9	2
337	Composition of fine particulate matter and risk of preterm birth: A nationwide birth cohort study in 336 Chinese cities <i>Journal of Hazardous Materials</i> , 2021 , 425, 127645	12.8	2
336	Monthly Global Estimates of Fine Particulate Matter and Their Uncertainty. <i>Environmental Science & Eamp; Technology</i> , 2021 , 55, 15287-15300	10.3	16
335	Long-term exposure to PM major components and mortality in the southeastern United States. <i>Environment International</i> , 2021 , 158, 106969	12.9	5
334	Long-term exposure to iron and copper in fine particulate air pollution and their combined impact on reactive oxygen species concentration in lung fluid: a population-based cohort study of cardiovascular disease incidence and mortality in Toronto, Canada. <i>International Journal of</i>	7.8	9
333	A Population-Based Cohort Study of Respiratory Disease and Long-Term Exposure to Iron and Copper in Fine Particulate Air Pollution and Their Combined Impact on Reactive Oxygen Species Generation in Human Lungs. <i>Environmental Science & Environmental Science (Lamp)</i> ; Technology, 2021 , 55, 3807-3818	10.3	12
332	Assessing the Distribution of Air Pollution Health Risks within Cities: A Neighborhood-Scale Analysis Leveraging High-Resolution Data Sets in the Bay Area, California. <i>Environmental Health Perspectives</i> , 2021 , 129, 37006	8.4	14
331	Ambient Fine Particulate Matter Air Pollution and Risk of Weight Gain and Obesity in United States Veterans: An Observational Cohort Study. <i>Environmental Health Perspectives</i> , 2021 , 129, 47003	8.4	9
330	Source sector and fuel contributions to ambient PM and attributable mortality across multiple spatial scales. <i>Nature Communications</i> , 2021 , 12, 3594	17.4	31
329	Effects of COVID-19 lockdowns on fine particulate matter concentrations. <i>Science Advances</i> , 2021 , 7,	14.3	17
328	Examining PM concentrations and exposure using multiple models. <i>Environmental Research</i> , 2021 , 196, 110432	7.9	7
327	Air Pollution as a Risk Factor for Incident Chronic Obstructive Pulmonary Disease and Asthma. A 15-Year Population-based Cohort Study. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2021 , 203, 1138-1148	10.2	20
326	Ambient PM exposure and rapid spread of COVID-19 in the United States. <i>Science of the Total Environment</i> , 2021 , 760, 143391	10.2	24
325	Ambient PM and its chemical constituents on lifetime-ever pneumonia in Chinese children: A multi-center study. <i>Environment International</i> , 2021 , 146, 106176	12.9	17
324	Fine particulate matter constituents and sub-clinical outcomes of cardiovascular diseases: A multi-center study in China. <i>Science of the Total Environment</i> , 2021 , 759, 143555	10.2	5
323	Fine Particle Exposure and Clinical Aggravation in Neurodegenerative Diseases in New York State. <i>Environmental Health Perspectives</i> , 2021 , 129, 27003	8.4	9
322	Factors controlling marine aerosol size distributions and their climate effects over the northwest Atlantic Ocean region. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 1889-1916	6.8	5
321	Fine particulate matter concentration and composition and the incidence of childhood asthma. <i>Environment International</i> , 2021 , 152, 106486	12.9	14

320	Grid-independent high-resolution dust emissions (v1.0) for chemical transport models: application to GEOS-Chem (12.5.0). <i>Geoscientific Model Development</i> , 2021 , 14, 4249-4260	6.3	3
319	Predicting Spatial Variations in Multiple Measures of Oxidative Burden for Outdoor Fine Particulate Air Pollution across Canada. <i>Environmental Science & Environmental Scienc</i>	10.3	О
318	Does exposure to air pollution increase the risk of acute care in young children with asthma? An Ontario, Canada study. <i>Environmental Research</i> , 2021 , 199, 111302	7.9	4
317	Long-term exposure to air pollution and mortality in a prospective cohort: The Ontario Health Study. <i>Environment International</i> , 2021 , 154, 106570	12.9	5
316	Prenatal exposure to residential PM and its chemical constituents and weight in preschool children: A longitudinal study from Shanghai, China. <i>Environment International</i> , 2021 , 154, 106580	12.9	2
315	Ambient fine particulate matter air pollution and the risk of hospitalization among COVID-19 positive individuals: Cohort study. <i>Environment International</i> , 2021 , 154, 106564	12.9	24
314	Parkinson's disease aggravation in association with fine particle components in New York State. <i>Environmental Research</i> , 2021 , 201, 111554	7.9	6
313	The prospective effects of long-term exposure to ambient PM and constituents on mortality in rural East China. <i>Chemosphere</i> , 2021 , 280, 130740	8.4	2
312	Association of fine particulate matter air pollution and its constituents with lung function: The China Pulmonary Health study. <i>Environment International</i> , 2021 , 156, 106707	12.9	4
311	Fine particulate matter constituents and infant mortality in Africa: A multicountry study. <i>Environment International</i> , 2021 , 156, 106739	12.9	3
310	Large global variations in measured airborne metal concentrations driven by anthropogenic sources. <i>Scientific Reports</i> , 2020 , 10, 21817	4.9	4
309	Prenatal Exposure to Specific PM Chemical Constituents and Preterm Birth in China: A Nationwide Cohort Study. <i>Environmental Science & Environmental S</i>	10.3	15
308	Global Estimates and Long-Term Trends of Fine Particulate Matter Concentrations (1998-2018). <i>Environmental Science & Environmental Science & Environm</i>	10.3	143
307	Global high-resolution emissions of soil NO, sea salt aerosols, and biogenic volatile organic compounds. <i>Scientific Data</i> , 2020 , 7, 148	8.2	13
306	Fine particulate matter exposure and renal function: A population-based study among pregnant women in China. <i>Environment International</i> , 2020 , 141, 105805	12.9	14
305	Fine particular matter and its constituents in air pollution and gestational diabetes mellitus. <i>Environment International</i> , 2020 , 142, 105880	12.9	15
304	Understanding the Joint Impacts of Fine Particulate Matter Concentration and Composition on the Incidence and Mortality of Cardiovascular Disease: A Component-Adjusted Approach. <i>Environmental Science & Environmental Scien</i>	10.3	16
303	Ambient air pollution and incidence of early-onset paediatric type 1 diabetes: A retrospective population-based cohort study. <i>Environmental Research</i> , 2020 , 184, 109291	7.9	15

(2020-2020)

302	NO₂ columns and model simulations. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 7231-7241	6.8	3	
301	A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel-specific sources (1970\(\textit{0}\) 1017): an application of the Community Emissions Data System (CEDS). <i>Earth System Science Data</i> , 2020 , 12, 3413-3442	10.5	50	
300	Ambient ultrafine particle concentrations and incidence of childhood cancers. <i>Environment International</i> , 2020 , 145, 106135	12.9	3	
299	Inferring ground-level nitrogen dioxide concentrations at fine spatial resolution applied to the TROPOMI satellite instrument. <i>Environmental Research Letters</i> , 2020 , 15, 104013	6.2	17	
298	Beyond SOx reductions from shipping: assessing the impact of NOx and carbonaceous-particle controls on human health and climate. <i>Environmental Research Letters</i> , 2020 , 15, 124046	6.2	4	
297	Early life exposure to air pollution and incidence of childhood asthma, allergic rhinitis and eczema. <i>European Respiratory Journal</i> , 2020 , 55,	13.6	44	
296	The impact of air pollution on the incidence of diabetes and survival among prevalent diabetes cases. <i>Environment International</i> , 2020 , 134, 105333	12.9	24	
295	Evaluating the Sensitivity of PM2.5-Mortality Associations to the Spatial and Temporal Scale of Exposure Assessment. <i>Epidemiology</i> , 2020 , 31, 168-176	3.1	17	
294	Prenatal exposure to fine particles, premature rupture of membranes and gestational age: A prospective cohort study. <i>Environment International</i> , 2020 , 145, 106146	12.9	2	
293	Development of Europe-Wide Models for Particle Elemental Composition Using Supervised Linear Regression and Random Forest. <i>Environmental Science & Environmental Science & En</i>	10.3	14	
292	Satellite-based estimates of decline and rebound in China's CO emissions during COVID-19 pandemic. <i>Science Advances</i> , 2020 , 6,	14.3	58	
291	Self-rated stress, distress, mental health, and health as modifiers of the association between long-term exposure to ambient pollutants and mortality. <i>Environmental Research</i> , 2020 , 191, 109973	7.9	5	
290	Residential Greenness and Cardiovascular Disease Incidence, Readmission, and Mortality. <i>Environmental Health Perspectives</i> , 2020 , 128, 87005	8.4	20	
289	Exposure to ambient air pollution and the incidence of lung cancer and breast cancer in the Ontario Population Health and Environment Cohort. <i>International Journal of Cancer</i> , 2020 , 146, 2450-2459	7.5	23	
288	The role of cardiovascular disease in the relationship between air pollution and incident dementia: a population-based cohort study. <i>International Journal of Epidemiology</i> , 2020 , 49, 36-44	7.8	19	
287	Urban green space and the risks of dementia and stroke. <i>Environmental Research</i> , 2020 , 186, 109520	7.9	29	
286	Disease assimilation: The mortality impacts of fine particulate matter on immigrants to Canada. Health Reports, 2020 , 31, 14-26	4.7	4	
285	The association between ambient air pollution concentrations and psychological distress. <i>Health Reports</i> , 2020 , 31, 3-11	4.7	2	

284	Ambient Air Pollution and the Risk of Atrial Fibrillation and Stroke: A Population-Based Cohort Study. <i>Environmental Health Perspectives</i> , 2019 , 127, 87009	8.4	37
283	Examination of monitoring approaches for ambient air pollution: A case study for India. <i>Atmospheric Environment</i> , 2019 , 216, 116940	5.3	29
282	Methods, availability, and applications of PM exposure estimates derived from ground measurements, satellite, and atmospheric models. <i>Journal of the Air and Waste Management Association</i> , 2019 , 69, 1391-1414	2.4	45
281	Twin growth discordance in association with maternal exposure to fine particulate matter and its chemical constituents during late pregnancy. <i>Environment International</i> , 2019 , 133, 105148	12.9	5
280	Regional Estimates of Chemical Composition of Fine Particulate Matter Using a Combined Geoscience-Statistical Method with Information from Satellites, Models, and Monitors. <i>Environmental Science & Environmental Science & </i>	10.3	224
279	A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide. <i>Environment International</i> , 2019 , 130, 104934	12.9	90
278	No one knows which city has the highest concentration of fine particulate matter. <i>Atmospheric Environment: X</i> , 2019 , 3, 100040	2.8	26
277	Heterogeneous sulfate aerosol formation mechanisms during wintertime Chinese haze events: air quality model assessment using observations of sulfate oxygen isotopes in Beijing. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 6107-6123	6.8	82
276	Complex relationships between greenness, air pollution, and mortality in a population-based Canadian cohort. <i>Environment International</i> , 2019 , 128, 292-300	12.9	43
275	Evaluation of a method to indirectly adjust for unmeasured covariates in the association between fine particulate matter and mortality. <i>Environmental Research</i> , 2019 , 175, 108-116	7.9	11
274	Estimated Long-Term (1981-2016) Concentrations of Ambient Fine Particulate Matter across North America from Chemical Transport Modeling, Satellite Remote Sensing, and Ground-Based Measurements. <i>Environmental Science & Environmental Science & Env</i>	10.3	26
273	Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian Arctic Archipelago. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 2787-2812	2 ^{6.8}	25
272	Interpretation of measured aerosol mass scattering efficiency over North America using a chemical transport model. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 2635-2653	6.8	19
271	Overview paper: New insights into aerosol and climate in the Arctic. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 2527-2560	6.8	85
270	Assessing the Iterative Finite Difference Mass Balance and 4D-Var Methods to Derive Ammonia Emissions Over North America Using Synthetic Observations. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 4222-4236	4.4	8
269	Source Contributions to Ambient Fine Particulate Matter for Canada. <i>Environmental Science & Environmental Science & Technology</i> , 2019 , 53, 10269-10278	10.3	21
268	Simulation of airborne trace metals in fine particulate matter over North America. <i>Atmospheric Environment</i> , 2019 , 214,	5.3	10
267	Exposure to ambient air pollution and the incidence of congestive heart failure and acute myocardial infarction: A population-based study of 5.1 million Canadian adults living in Ontario.	12.9	55

(2018-2019)

266	Evaluation of Maternal Exposure to PM and Its Components on Maternal and Neonatal Thyroid Function and Birth Weight: A Cohort Study. <i>Thyroid</i> , 2019 , 29, 1147-1157	6.2	22
265	An Observation-Based Correction for Aerosol Effects on Nitrogen Dioxide Column Retrievals Using the Absorbing Aerosol Index. <i>Geophysical Research Letters</i> , 2019 , 46, 8442-8452	4.9	5
264	Unprecedented Atmospheric Ammonia Concentrations Detected in the High Arctic From the 2017 Canadian Wildfires. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 8178-8202	4.4	17
263	Comparison of multiple PM 2.5 exposure products for estimating health benefits of emission controls over New York State, USA. <i>Environmental Research Letters</i> , 2019 , 14, 084023	6.2	22
262	Spatial variations in ambient ultrafine particle concentrations and risk of congenital heart defects. <i>Environment International</i> , 2019 , 130, 104953	12.9	16
261	Low concentrations of fine particle air pollution and mortality in the Canadian Community Health Survey cohort. <i>Environmental Health</i> , 2019 , 18, 84	6	34
260	Assessing uncertainties of a geophysical approach to estimate surface fine particulate matter distributions from satellite-observed aerosol optical depth. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 295-313	6.8	20
259	Examining the Shape of the Association between Low Levels of Fine Particulate Matter and Mortality across Three Cycles of the Canadian Census Health and Environment Cohort. <i>Environmental Health Perspectives</i> , 2019 , 127, 107008	8.4	42
258	Heterogeneous sulfate aerosol formation mechanisms during wintertime Chinese haze events: Air quality model assessment using observations of sulfate oxygen isotopes in Beijing 2019 ,		2
257	Spatiotemporal Variations in Ambient Ultrafine Particles and the Incidence of Childhood Asthma. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2019 , 199, 1487-1495	10.2	42
256	The Atmospheric Imaging Mission for Northern Regions: AIM-North. <i>Canadian Journal of Remote Sensing</i> , 2019 , 45, 423-442	1.8	10
255	Carbon and health implications of trade restrictions. <i>Nature Communications</i> , 2019 , 10, 4947	17.4	22
254	Associations of Long-Term Exposure to Ultrafine Particles and Nitrogen Dioxide With Increased Incidence of Congestive Heart Failure and Acute Myocardial Infarction. <i>American Journal of Epidemiology</i> , 2019 , 188, 151-159	3.8	33
253	High resolution mapping of nitrogen dioxide with TROPOMI: First results and validation over the Canadian oil sands. <i>Geophysical Research Letters</i> , 2019 , 46, 1049-1060	4.9	117
252	Variability in ambient ozone and fine particle concentrations and population susceptibility among Canadian health regions. <i>Canadian Journal of Public Health</i> , 2019 , 110, 149-158	3.2	5
251	Effect modification of perinatal exposure to air pollution and childhood asthma incidence. European Respiratory Journal, 2018,	13.6	35
250	Exposure to Ambient Ultrafine Particles and Nitrogen Dioxide and Incident Hypertension and Diabetes. <i>Epidemiology</i> , 2018 , 29, 323-332	3.1	59
249	Comparison and evaluation of anthropogenic emissions of SO₂ and NO_{<i>x</i>} over China. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 3433-3456	6.8	34

248	Refractory black carbon at the Whistler Peak High Elevation Research Site IMeasurements and simulations. <i>Atmospheric Environment</i> , 2018 , 181, 34-46	5.3	2
247	Data integration model for air quality: a hierarchical approach to the global estimation of exposures to ambient air pollution. <i>Journal of the Royal Statistical Society Series C: Applied Statistics</i> , 2018 , 67, 231-253	1.5	87
246	Data Integration for the Assessment of Population Exposure to Ambient Air Pollution for Global Burden of Disease Assessment. <i>Environmental Science & Environmental Science & </i>	10.3	102
245	Spatial PM, NO, O and BC models for Western Europe - Evaluation of spatiotemporal stability. <i>Environment International</i> , 2018 , 120, 81-92	12.9	106
244	Source influence on emission pathways and ambient PM pollution over India (2015-2050). <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 8017-8039	6.8	86
243	Effects of ambient air pollution on incident Parkinson's disease in Ontario, 2001 to 2013: a population-based cohort study. <i>International Journal of Epidemiology</i> , 2018 , 47, 2038-2048	7.8	36
242	Ambient air pollution and the prevalence of rhinoconjunctivitis in adolescents: a worldwide ecological analysis. <i>Air Quality, Atmosphere and Health</i> , 2018 , 11, 755-764	5.6	4
241	GEOS-Chem High Performance (GCHP v11-02c): a next-generation implementation of the GEOS-Chem chemical transport model for massively parallel applications. <i>Geoscientific Model Development</i> , 2018 , 11, 2941-2953	6.3	27
240	StratosphereEroposphere separation of nitrogen dioxide columns from the TEMPO geostationary satellite instrument. <i>Atmospheric Measurement Techniques</i> , 2018 , 11, 6271-6287	4	3
239	Assessing snow extent data sets over North America to inform and improve trace gas retrievals from solar backscatter. <i>Atmospheric Measurement Techniques</i> , 2018 , 11, 2983-2994	4	10
238	Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017. <i>Lancet, The</i> , 2018 , 392, 2091-2138	40	210
237	Diabetes Status and Susceptibility to the Effects of PM2.5 Exposure on Cardiovascular Mortality in a National Canadian Cohort. <i>Epidemiology</i> , 2018 , 29, 784-794	3.1	21
236	Insight into global trends in aerosol composition from 2005 to 2015 inferred from the OMI Ultraviolet Aerosol Index. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 8097-8112	6.8	20
235	New insights into aerosol and climate in the Arctic 2018,		3
234	Associations between Living Near Water and Risk of Mortality among Urban Canadians. <i>Environmental Health Perspectives</i> , 2018 , 126, 077008	8.4	16
233	Satellite-Based Land-Use Regression for Continental-Scale Long-Term Ambient PM Exposure Assessment in Australia. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	36
232	Diurnal Patterns in Global Fine Particulate Matter Concentration. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 687-691	11	17
231	Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian Arctic Archipelago 2018 ,		1

230	Estimates of the Global Burden of Ambient [Formula: see text], Ozone, and [Formula: see text] on Asthma Incidence and Emergency Room Visits. <i>Environmental Health Perspectives</i> , 2018 , 126, 107004	8.4	132
229	Interpretation of Measured Aerosol Mass Scattering Efficiency Over North America Using a Chemical Transport Model 2018 ,		2
228	Global Sources of Fine Particulate Matter: Interpretation of PM Chemical Composition Observed by SPARTAN using a Global Chemical Transport Model. <i>Environmental Science & Camp; Technology</i> , 2018 , 52, 11670-11681	10.3	40
227	Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 9592	-9597	810
226	Impact of air pollution control policies on future PM concentrations and their source contributions in China. <i>Journal of Environmental Management</i> , 2018 , 227, 124-133	7.9	50
225	Synoptic meteorological modes of variability for fine particulate matter (PM_{2.5}) air quality in major metropolitan regions of China. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 6733-6748	6.8	64
224	Long-term exposure to air pollution and the incidence of multiple sclerosis: A population-based cohort study. <i>Environmental Research</i> , 2018 , 166, 437-443	7.9	21
223	Decadal Changes in Seasonal Variation of Atmospheric Haze over the Eastern United States: Connections with Anthropogenic Emissions and Implications for Aerosol Composition. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 413-418	11	5
222	Maternal exposure to ambient air pollution and risk of early childhood cancers: A population-based study in Ontario, Canada. <i>Environment International</i> , 2017 , 100, 139-147	12.9	60
221	Transient climate and ambient health impacts due to national solid fuel cookstove emissions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1269-1274	11.5	74
220	Improving present day and future estimates of anthropogenic sectoral emissions and the resulting air quality impacts in Africa. <i>Faraday Discussions</i> , 2017 , 200, 397-412	3.6	11
219	Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. <i>Lancet, The</i> , 2017 , 389, 1907-1918	40	2658
218	Comparing mass balance and adjoint methods for inverse modeling of nitrogen dioxide columns for global nitrogen oxide emissions. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 4718-4734	4.4	21
217	Global Land Use Regression Model for Nitrogen Dioxide Air Pollution. <i>Environmental Science & Environmental Science & Technology</i> , 2017 , 51, 6957-6964	10.3	111
216	Transboundary health impacts of transported global air pollution and international trade. <i>Nature</i> , 2017 , 543, 705-709	50.4	501
215	Anthropogenic fugitive, combustion and industrial dust is a significant, underrepresented fine particulate matter source in global atmospheric models. <i>Environmental Research Letters</i> , 2017 , 12, 0440	f8 ²	54
214	Living near major roads and the incidence of dementia, Parkinson's disease, and multiple sclerosis: a population-based cohort study. <i>Lancet, The</i> , 2017 , 389, 718-726	40	401
213	Associations between fine particulate matter and mortality in the 2001 Canadian Census Health and Environment Cohort. <i>Environmental Research</i> , 2017 , 159, 406-415	7.9	97

212	Urban greenness and mortality in Canada's largest cities: a national cohort study. <i>Lancet Planetary Health, The</i> , 2017 , 1, e289-e297	9.8	129
211	Comparison and evaluation of anthropogenic emissions of SO₂ and NO<sub>x over China 2017 ,		1
210	Source influence on emission pathways and ambient PM_{2.5} pollution over India (2015 0 050) 2017 ,		4
209	Comparing the Health Effects of Ambient Particulate Matter Estimated Using Ground-Based versus Remote Sensing Exposure Estimates. <i>Environmental Health Perspectives</i> , 2017 , 125, 552-559	8.4	87
208	Exposure to ambient air pollution and the incidence of dementia: A population-based cohort study. <i>Environment International</i> , 2017 , 108, 271-277	12.9	185
207	Trends in Chemical Composition of Global and Regional Population-Weighted Fine Particulate Matter Estimated for 25 Years. <i>Environmental Science & Environmental Science & Env</i>	10.3	53
206	Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016. <i>Lancet, The</i> , 2017 , 390, 1423-1459	40	224
205	Comparisons of a Chemical Transport Model with a Four-Year (April to September) Analysis of Fine- and Coarse-Mode Aerosol Optical Depth Retrievals Over the Canadian Arctic. <i>Atmosphere - Ocean</i> , 2017 , 55, 213-229	1.5	6
204	Long-term exposure to ambient ultrafine particles and respiratory disease incidence in in Toronto, Canada: a cohort study. <i>Environmental Health</i> , 2017 , 16, 64	6	66
203	Tropospheric Emissions: Monitoring of Pollution (TEMPO). <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2017 , 186, 17-39	2.1	163
202	Global deposition of total reactive nitrogen oxides from 1996 to 2014 constrained with satellite observations of NO₂ columns. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 100	07 6 -800)9 ⁴³
201	Impacts of coal burning on ambient PM_{2.5} pollution in China. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 4477-4491	6.8	102
200	OMI satellite observations of decadal changes in ground-level sulfur dioxide over North America. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 5921-5929	6.8	24
199	Boundary layer and free-tropospheric dimethyl sulfide in the Arctic spring and summer. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 8757-8770	6.8	7
198	Source attribution of Arctic black carbon constrained by aircraft and surface measurements. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 11971-11989	6.8	47
197	Impact of spatial proxies on the representation of bottom-up emission inventories: A satellite-based analysis. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 4131-4145	6.8	42
196	Global deposition of total reactive nitrogen oxides from 1996 to 2014 constrained with satellite observations of NO₂ columns 2017 ,		1
195	Spectroscopy and Radiative Transfer of Planetary Atmospheres 2017 ,		5

194	Cohort Profile: The ONtario Population Health and Environment Cohort (ONPHEC). <i>International Journal of Epidemiology</i> , 2017 , 46, 405-405j	7.8	22
193	Exposure to fine particulate matter air pollution in Canada. <i>Health Reports</i> , 2017 , 28, 9-16	4.7	6
192	Relationships between Changes in Urban Characteristics and Air Quality in East Asia from 2000 to 2010. <i>Environmental Science & Environmental Science </i>	10.3	53
191	Development of West-European PM and NO land use regression models incorporating satellite-derived and chemical transport modelling data. <i>Environmental Research</i> , 2016 , 151, 1-10	7.9	118
190	Long-term exposure to fine particulate matter air pollution and the risk of lung cancer among participants of the Canadian National Breast Screening Study. <i>International Journal of Cancer</i> , 2016 , 139, 1958-66	7.5	53
189	Ammonia in the summertime Arctic marine boundary layer: sources, sinks, and implications. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 1937-1953	6.8	48
188	Interpreting the ultraviolet aerosol index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 2507-2523	6.8	62
187	Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 3525-3561	6.8	58
186	Processes controlling the annual cycle of Arctic aerosol number and size distributions. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 3665-3682	6.8	84
185	Temporal and spectral cloud screening of polar winter aerosol optical depth (AOD): impact of homogeneous and inhomogeneous clouds and crystal layers on climatological-scale AODs. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 12753-12765	6.8	9
184	Land cover change impacts on atmospheric chemistry: simulating projected large-scale tree mortality in the United States. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 2323-2340	6.8	15
183	Dimethyl sulfide in the summertime Arctic atmosphere: measurements and source sensitivity simulations. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 6665-6680	6.8	55
182	Variation in global chemical composition of PM_{2.5}: emerging results from SPARTAN. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 9629-9653	6.8	92
181	Space-based detection of missing sulfur dioxide sources of global air pollution. <i>Nature Geoscience</i> , 2016 , 9, 496-500	18.3	105
180	Risk estimates of mortality attributed to low concentrations of ambient fine particulate matter in the Canadian community health survey cohort. <i>Environmental Health</i> , 2016 , 15, 18	6	114
179	Oxidative burden of fine particulate air pollution and risk of cause-specific mortality in the Canadian Census Health and Environment Cohort (CanCHEC). <i>Environmental Research</i> , 2016 , 146, 92-9	7.9	64
178	Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors. <i>Environmental Science & Environmental Science & E</i>	10.3	627
177	"What We Breathe Impacts Our Health: Improving Understanding of the Link between Air Pollution and Health". <i>Environmental Science & Environmental Sci</i>	10.3	229

176	Fine particulate air pollution and systemic autoimmune rheumatic disease in two Canadian provinces. <i>Environmental Research</i> , 2016 , 146, 85-91	7.9	63
175	Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013. <i>Environmental Science & Environmental Scienc</i>	10.3	682
174	Impact of spatial proxies on the representation of bottom-up emission inventories: A satellite-based analysis 2016 ,		1
173	Long-Term Trends Worldwide in Ambient NO2 Concentrations Inferred from Satellite Observations. <i>Environmental Health Perspectives</i> , 2016 , 124, 281-9	8.4	113
172	Ambient Fine Particulate Matter and Mortality among Survivors of Myocardial Infarction: Population-Based Cohort Study. <i>Environmental Health Perspectives</i> , 2016 , 124, 1421-8	8.4	53
171	Sensitivity of chemistry-transport model simulations to the duration of chemical and transport operators: a case study with GEOS-Chem®10-01. <i>Geoscientific Model Development</i> , 2016 , 9, 1683-1695	6.3	28
170	Associations of Pregnancy Outcomes and PM2.5 in a National Canadian Study. <i>Environmental Health Perspectives</i> , 2016 , 124, 243-9	8.4	89
169	Impacts of Coal Burning on Ambient PM_{2.5} Pollution in China 2016 ,		3
168	Evaluation and application of multi-decadal visibility data for trend analysis of atmospheric haze. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 2435-2457	6.8	20
167	A New Method to Jointly Estimate the Mortality Risk of Long-Term Exposure to Fine Particulate Matter and its Components. <i>Scientific Reports</i> , 2016 , 6, 18916	4.9	45
166	Atmospheric fine particulate matter and breast cancer mortality: a population-based cohort study. <i>BMJ Open</i> , 2016 , 6, e012580	3	33
165	Ambient air pollution and adverse birth outcomes: Differences by maternal comorbidities. <i>Environmental Research</i> , 2016 , 148, 457-466	7.9	98
164	A national study of the association between traffic-related air pollution and adverse pregnancy outcomes in Canada, 1999-2008. <i>Environmental Research</i> , 2016 , 148, 513-526	7.9	86
163	Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. <i>Lancet, The</i> , 2016 , 388, 1659-1724	40	2431
162	Measuring the health-related Sustainable Development Goals in 188 countries: a baseline analysis from the Global Burden of Disease Study 2015. <i>Lancet, The</i> , 2016 , 388, 1813-1850	40	302
161	Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. <i>Environmental Health Perspectives</i> , 2015 , 123, 135-43	8.4	569
160	Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model. <i>Remote Sensing of Environment</i> , 2015 , 166, 262-270	13.2	162
159	SPARTAN: a global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications. <i>Atmospheric Measurement Techniques</i> , 2015 , 8, 505-52	214	56

158	Revealing the hidden health costs embodied in Chinese exports. <i>Environmental Science & Environmental Science & Technology</i> , 2015 , 49, 4381-8	10.3	68
157	Response of global particulate-matter-related mortality to changes in local precursor emissions. <i>Environmental Science & Environmental Science & Envi</i>	10.3	88
156	Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. <i>Lancet, The</i> , 2015 , 386, 2287-323	40	1776
155	High-Resolution Satellite-Derived PM2.5 from Optimal Estimation and Geographically Weighted Regression over North America. <i>Environmental Science & Environmental Science & En</i>	10.3	169
154	Assessment of the magnitude and recent trends in satellite-derived ground-level nitrogen dioxide over North America. <i>Atmospheric Environment</i> , 2015 , 118, 236-245	5.3	43
153	The importance of interstitial particle scavenging by cloud droplets in shaping the remote aerosol size distribution and global aerosol-climate effects. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 6147-6	56-8 5158	27
152	Influence of aerosols and surface reflectance on satellite NO₂ retrieval: seasonal and spatial characteristics and implications for NO_{<i>x</i>} emission constraints. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 11217-11241	6.8	61
151	Estimating ground-level PM_{2.5} in eastern China using aerosol optical depth determined from the GOCI satellite instrument. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 13133-137	1448	51
150	Long-term Exposure to Fine Particulate Matter Air Pollution and Mortality Among Canadian Women. <i>Epidemiology</i> , 2015 , 26, 536-45	3.1	61
149	Ambient PM2.5, O[Jand NO[Exposures and Associations with Mortality over 16 Years of Follow-Up in the Canadian Census Health and Environment Cohort (CanCHEC). <i>Environmental Health Perspectives</i> , 2015 , 123, 1180-6	8.4	303
148	Estimated public health impacts of changes in concentrations of fine particle air pollution in Canada, 2000 to 2011. <i>Canadian Journal of Public Health</i> , 2015 , 106, e362-8	3.2	10
147	Satellite measurements oversee Chinal sulfur dioxide emission reductions from coal-fired power plants. <i>Environmental Research Letters</i> , 2015 , 10, 114015	6.2	69
146	Global chemical composition of ambient fine particulate matter for exposure assessment. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	118
145	Global dry deposition of nitrogen dioxide and sulfur dioxide inferred from space-based measurements. <i>Global Biogeochemical Cycles</i> , 2014 , 28, 1025-1043	5.9	58
144	Fifteen-year global time series of satellite-derived fine particulate matter. <i>Environmental Science</i> & amp; Technology, 2014 , 48, 11109-18	10.3	193
143	Spatially and seasonally resolved estimate of the ratio of organic mass to organic carbon. <i>Atmospheric Environment</i> , 2014 , 87, 34-40	5.3	53
142	Evaluation of OMI operational standard NO₂ column retrievals using in situ and surface-based NO₂ observations. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 11587-11609	6.8	143
141	Retrieving tropospheric nitrogen dioxide from the Ozone Monitoring Instrument: effects of aerosols, surface reflectance anisotropy, and vertical profile of nitrogen dioxide. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 1441-1461	6.8	130

140	Improved satellite retrievals of NO₂ and SO₂ over the Canadian oil sands and comparisons with surface measurements. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 3637-3656	6.8	110
139	Worldwide biogenic soil NO_x emissions inferred from OMI NO₂ observations. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 10363-10381	6.8	105
138	Interpreting aerosol lifetimes using the GEOS-Chem model and constraints from radionuclide measurements. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 4313-4325	6.8	25
137	Outdoor air pollution, preterm birth, and low birth weight: analysis of the world health organization global survey on maternal and perinatal health. <i>Environmental Health Perspectives</i> , 2014 , 122, 425-30	8.4	199
136	Long-term exposure to fine particulate matter: association with nonaccidental and cardiovascular mortality in the agricultural health study cohort. <i>Environmental Health Perspectives</i> , 2014 , 122, 609-15	8.4	105
135	SPARTAN: a global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications 2014 ,		2
134	Spatial association between ambient fine particulate matter and incident hypertension. <i>Circulation</i> , 2014 , 129, 562-9	16.7	135
133	Tropospheric nitric acid columns from the IASI satellite instrument interpreted with a chemical transport model: Implications for parameterizations of nitric oxide production by lightning. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 10068-10079	4.4	11
132	Spatial analysis of air pollution and mortality in California. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2013 , 188, 593-9	10.2	227
131	Emissions estimation from satellite retrievals: A review of current capability. <i>Atmospheric Environment</i> , 2013 , 77, 1011-1042	5.3	270
130	Comparison of remote sensing and fixed-site monitoring approaches for examining air pollution and health in a national study population. <i>Atmospheric Environment</i> , 2013 , 80, 161-171	5.3	17
129	Estimates of global mortality attributable to particulate air pollution using satellite imagery. <i>Environmental Research</i> , 2013 , 120, 33-42	7.9	192
128	Toward the next generation of air quality monitoring: Particulate Matter. <i>Atmospheric Environment</i> , 2013 , 80, 584-590	5.3	68
127	Application of the deletion/substitution/addition algorithm to selecting land use regression models for interpolating air pollution measurements in California. <i>Atmospheric Environment</i> , 2013 , 77, 172-177	5.3	48
126	Long-term fine particulate matter exposure and mortality from diabetes in Canada. <i>Diabetes Care</i> , 2013 , 36, 3313-20	14.6	119
125	A hybrid approach to estimating national scale spatiotemporal variability of PM2.5 in the contiguous United States. <i>Environmental Science & Environmental Science & Environme</i>	10.3	160
124	Scaling relationship for NO2 pollution and urban population size: a satellite perspective. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	129
123	Western European land use regression incorporating satellite- and ground-based measurements of NO2 and PM10. <i>Environmental Science & Enp.; Technology</i> , 2013 , 47, 13555-64	10.3	127

122	Absorbing aerosol radiative effects in the limb-scatter viewing geometry. <i>Atmospheric Measurement Techniques</i> , 2013 , 6, 2761-2776	4	1
121	Risk of incident diabetes in relation to long-term exposure to fine particulate matter in Ontario, Canada. <i>Environmental Health Perspectives</i> , 2013 , 121, 804-10	8.4	181
120	Optimal estimation for global ground-level fine particulate matter concentrations. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 5621-5636	4.4	97
119	Application of OMI, SCIAMACHY, and GOME-2 satellite SO2 retrievals for detection of large emission sources. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 11,399-11,418	4.4	91
118	Analysis of satellite remote sensing observations of low ozone events in the tropical upper troposphere and links with convection. <i>Geophysical Research Letters</i> , 2013 , 40, 3761-3765	4.9	9
117	Persistent sensitivity of Asian aerosol to emissions of nitrogen oxides. <i>Geophysical Research Letters</i> , 2013 , 40, 1021-1026	4.9	36
116	Photon conservation in scattering by large ice crystals with the SASKTRAN radiative transfer model. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113, 582-593	2.1	4
115	A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. <i>Lancet, The</i> , 2012 , 380, 2224-60	40	7625
114	Improving the accuracy of daily satellite-derived ground-level fine aerosol concentration estimates for North America. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	54
113	A satellite-based multi-pollutant index of global air quality. <i>Environmental Science & Environmental </i>	10.3	17
112	Spatiotemporal air pollution exposure assessment for a Canadian population-based lung cancer case-control study. <i>Environmental Health</i> , 2012 , 11, 22	6	48
111	Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. <i>Environmental Science & Environmental Scien</i>	10.3	503
110	OSIRIS: A Decade of Scattered Light. Bulletin of the American Meteorological Society, 2012 , 93, 1845-186	3 6.1	27
109	Comparison of geostatistical interpolation and remote sensing techniques for estimating long-term exposure to ambient PM2.5 concentrations across the continental United States. <i>Environmental Health Perspectives</i> , 2012 , 120, 1727-32	8.4	65
108	Satellite-based estimates of ambient air pollution and global variations in childhood asthma prevalence. <i>Environmental Health Perspectives</i> , 2012 , 120, 1333-9	8.4	49
107	Risk of nonaccidental and cardiovascular mortality in relation to long-term exposure to low concentrations of fine particulate matter: a Canadian national-level cohort study. <i>Environmental Health Perspectives</i> , 2012 , 120, 708-14	8.4	396
106	Simulation of nitrate, sulfate, and ammonium aerosols over the United States. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 11213-11227	6.8	98
105	PCW/PHEOS-WCA: quasi-geostationary Arctic measurements for weather, climate, and air quality from highly eccentric orbits 2012 ,		4

104	Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 7779-7795	6.8	236
103	Testing convective transport on short time scales: Comparisons with mass divergence and ozone anomaly patterns about high rain events. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		7
102	Uncertainty associated with convective wet removal of entrained aerosols in a global climate model. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 10725-10748	6.8	37
101	Growth in NO_x emissions from power plants in China: bottom-up estimates and satellite observations. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 4429-4447	6.8	139
100	Nested-grid simulation of mercury over North America. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 6095-6111	6.8	83
99	Atmospheric ammonia and particulate inorganic nitrogen over the United States. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 10295-10312	6.8	194
98	The spatial extent of source influences on modeled column concentrations of short-lived species. <i>Geophysical Research Letters</i> , 2012 , 39, n/a-n/a	4.9	24
97	Application of satellite observations for timely updates to global anthropogenic NOx emission inventories. <i>Geophysical Research Letters</i> , 2011 , 38, n/a-n/a	4.9	193
96	SO2 emissions and lifetimes: Estimates from inverse modeling using in situ and global, space-based (SCIAMACHY and OMI) observations. <i>Journal of Geophysical Research</i> , 2011 , 116,		182
95	Evaluation of ACE-FTS and OSIRIS Satellite retrievals of ozone and nitric acid in the tropical upper troposphere: Application to ozone production efficiency. <i>Journal of Geophysical Research</i> , 2011 , 116,		18
94	Retrievals of sulfur dioxide from the Global Ozone Monitoring Experiment 2 (GOME-2) using an optimal estimation approach: Algorithm and initial validation. <i>Journal of Geophysical Research</i> , 2011 , 116,		66
93	Novel application of satellite and in-situ measurements to map surface-level NO₂ in the Great Lakes region. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 11	761 ⁸ 11	7 7 8
92	Canada Wide Land-use Regression Models Created From Fixed Site Monitors and Validated With Independent City-specific Measurements. <i>Epidemiology</i> , 2011 , 22, S214-S215	3.1	2
91	Comparison of Remote Sensing, Land-use Regression, and Fixed-site Monitoring Approaches for Estimating Exposure to Ambient Air Pollution Within a Canadian Population-based Study of Respiratory and Cardiovascular Health. <i>Epidemiology</i> , 2011 , 22, S139	3.1	2
90	Satellite-based estimates of ground-level fine particulate matter during extreme events: A case study of the Moscow fires in 2010. <i>Atmospheric Environment</i> , 2011 , 45, 6225-6232	5.3	129
89	Associations between cigarette smoking, obesity, sociodemographic characteristics and remote-sensing-derived estimates of ambient PM2.5: results from a Canadian population-based survey. Occupational and Environmental Medicine, 2011, 68, 920-7	2.1	32
88	Creating national air pollution models for population exposure assessment in Canada. <i>Environmental Health Perspectives</i> , 2011 , 119, 1123-9	8.4	167
87	A Hybrid Approach for Predicting PM 2.5 Exposure: van Donkelaar et al. Respond. <i>Environmental Health Perspectives</i> , 2010 , 118,	8.4	3

(2008-2010)

86	Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. <i>Environmental Health Perspectives</i> , 2010 , 118, 847-55	8.4	1174
85	Surface reflectivity from the Ozone Monitoring Instrument using the Moderate Resolution Imaging Spectroradiometer to eliminate clouds: Effects of snow on ultraviolet and visible trace gas retrievals. <i>Journal of Geophysical Research</i> , 2010 , 115,		21
84	Indirect validation of tropospheric nitrogen dioxide retrieved from the OMI satellite instrument: Insight into the seasonal variation of nitrogen oxides at northern midlatitudes. <i>Journal of Geophysical Research</i> , 2010 , 115,		181
83	Influences of in-cloud aerosol scavenging parameterizations on aerosol concentrations and wet deposition in ECHAM5-HAM. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 1511-1543	6.8	82
82	Characterization of a large biogenic secondary organic aerosol event from eastern Canadian forests. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 2825-2845	6.8	141
81	Trans-Pacific transport of reactive nitrogen and ozone to Canada during spring. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 8353-8372	6.8	37
80	Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation. <i>Atmospheric Environment</i> , 2010 , 44, 2213-2223	5.3	179
79	Retrieval of vertical columns of sulfur dioxide from SCIAMACHY and OMI: Air mass factor algorithm development, validation, and error analysis. <i>Journal of Geophysical Research</i> , 2009 , 114,		93
78	Comparison of weekly cycle of NO2 satellite retrievals and NOx emission inventories for the continental United States. <i>Journal of Geophysical Research</i> , 2009 , 114,		35
77	Evidence for Asian dust effects from aerosol plume measurements during INTEX-B 2006 near Whistler, BC. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 3523-3546	6.8	54
76	Aerosol size-dependent below-cloud scavenging by rain and snow in the ECHAM5-HAM. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 4653-4675	6.8	104
75	Size-resolved aerosol chemistry on Whistler Mountain, Canada with a high-resolution aerosol mass spectrometer during INTEX-B. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 3095-3111	6.8	104
74	Evolution of Asian aerosols during transpacific transport in INTEX-B. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 7257-7287	6.8	155
73	Global distributions of nitric acid from IASI/MetOP measurements. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 7949-7962	6.8	33
72	Estimating Retrospectively Exposures to Outdoor Air Pollution at the Intraurban Scale in an Ontario Cohort Study. <i>Epidemiology</i> , 2009 , 20, S181-S182	3.1	2
71	Remote Sensing of Tropospheric Trace Gases (NO2 and SO2) from SCIAMACHY 2009 , 63-72		1
70	Satellite remote sensing of surface air quality. Atmospheric Environment, 2008, 42, 7823-7843	5.3	328
69	Ground-level nitrogen dioxide concentrations inferred from the satellite-borne Ozone Monitoring Instrument. <i>Journal of Geophysical Research</i> , 2008 , 113,		233

68	Springtime transitions of NO2, CO, and O3 over North America: Model evaluation and analysis. <i>Journal of Geophysical Research</i> , 2008 , 113,		50
67	Singular value decomposition analyses of tropical tropospheric ozone determined from TOMS. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	3
66	Net ecosystem fluxes of isoprene over tropical South America inferred from Global Ozone Monitoring Experiment (GOME) observations of HCHO columns. <i>Journal of Geophysical Research</i> , 2008 , 113,		84
65	Remote Sensing of Tropospheric Pollution from Space. <i>Bulletin of the American Meteorological Society</i> , 2008 , 89, 805-822	6.1	91
64	Trans-Pacific dust events observed at Whistler, British Columbia during INTEX-B. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 6297-6307	6.8	60
63	Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport Experiment (INTEX-B) to quantify long-range transport of East Asian sulfur to Canada. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 2999-3014	6.8	229
62	The effect of lightning NO_x production on surface ozone in the continental United States. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 5151-5159	6.8	45
61	A method for evaluating spatially-resolved NO_x emissions using Kalman filter inversion, direct sensitivities, and space-based NO₂ observations. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 5603-5614	6.8	71
60	Global retrieval of columnar aerosol single scattering albedo from space-based observations. <i>Journal of Geophysical Research</i> , 2007 , 112,		21
59	Seasonal variability of NOx emissions over east China constrained by satellite observations: Implications for combustion and microbial sources. <i>Journal of Geophysical Research</i> , 2007 , 112,		77
58	Chemical data assimilation estimates of continental U.S. ozone and nitrogen budgets during the Intercontinental Chemical Transport Experiment North America. <i>Journal of Geophysical Research</i> , 2007 , 112,		92
57	Space-based constraints on the production of nitric oxide by lightning. <i>Journal of Geophysical Research</i> , 2007 , 112,		157
56	Quantification of the factors controlling tropical tropospheric ozone and the South Atlantic maximum. <i>Journal of Geophysical Research</i> , 2007 , 112,		95
55	Model evidence for a significant source of secondary organic aerosol from isoprene. <i>Atmospheric Environment</i> , 2007 , 41, 1267-1274	5.3	49
54	Vertical profiles of lightning-produced NO₂ enhancements in the upper troposphere observed by OSIRIS. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 4281-4294	6.8	18
53	Remote sensed and in situ constraints on processes affecting tropical tropospheric ozone. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 815-838	6.8	141
52	First directly retrieved global distribution of tropospheric column ozone from GOME: Comparison with the GEOS-CHEM model. <i>Journal of Geophysical Research</i> , 2006 , 111,		48
51	Evaluation of space-based constraints on global nitrogen oxide emissions with regional aircraft measurements over and downwind of eastern North America. <i>Journal of Geophysical Research</i> , 2006, 111		159

(2003-2006)

50	Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing. <i>Journal of Geophysical Research</i> , 2006 , 111,		326
49	Testing convective parameterizations with tropical measurements of HNO3, CO, H2O, and O3: Implications for the water vapor budget. <i>Journal of Geophysical Research</i> , 2006 , 111,		54
48	Correction to E irst directly retrieved global distribution of tropospheric column ozone from GOME: Comparison with the GEOS-CHEM model <i>Journal of Geophysical Research</i> , 2006 , 111, n/a-n/a		31
47	Impact of transatlantic transport episodes on summertime ozone in Europe. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 2057-2072	6.8	45
46	Multi-model ensemble simulations of tropospheric NO₂ compared with GOME retrievals for the year 2000. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 2943-2979	6.8	118
45	Global partitioning of NOx sources using satellite observations: relative roles of fossil fuel combustion, biomass burning and soil emissions. <i>Faraday Discussions</i> , 2005 , 130, 407-23; discussion 491-517, 519-24	3.6	337
44	Mapping tropospheric ozone profiles from an airborne ultraviolet-visible spectrometer. <i>Applied Optics</i> , 2005 , 44, 3312-9	1.7	10
43	Tropical tropospheric ozone morphology and seasonality seen in satellite and in situ measurements and model calculations. <i>Journal of Geophysical Research</i> , 2005 , 110,		9
42	Evidence of lightning NOx and convective transport of pollutants in satellite observations over North America. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	84
41	North American pollution outflow and the trapping of convectively lifted pollution by upper-level anticyclone. <i>Journal of Geophysical Research</i> , 2005 , 110,		139
40	Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: Algorithm description and validation. <i>Journal of Geophysical Research</i> , 2005 , 110,		153
39	The Vertical Structure of Tropical Convection and Its Impact on the Budgets of Water Vapor and Ozone. <i>Journals of the Atmospheric Sciences</i> , 2005 , 62, 1560-1573	2.1	93
38	Stratospheric and tropospheric NO2 observed by SCIAMACHY: first results. <i>Advances in Space Research</i> , 2004 , 34, 780-785	2.4	39
37	Space-based diagnosis of surface ozone sensitivity to anthropogenic emissions. <i>Geophysical Research Letters</i> , 2004 , 31, n/a-n/a	4.9	110
36	Satellite mapping of rain-induced nitric oxide emissions from soils. <i>Journal of Geophysical Research</i> , 2004 , 109, n/a-n/a		116
35	Evaluation of GOME satellite measurements of tropospheric NO2 and HCHO using regional data from aircraft campaigns in the southeastern United States. <i>Journal of Geophysical Research</i> , 2004 , 109,		89
34	Mapping isoprene emissions over North America using formaldehyde column observations from space. <i>Journal of Geophysical Research</i> , 2003 , 108,		295
33	Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. <i>Journal of Geophysical Research</i> , 2003 , 108, ACH 1-1		534

32	Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols. Journal of Geophysical Research, 2003, 108, n/a-n/a	390
31	Tropospheric ozone at tropical and middle latitudes derived from TOMS/MLS residual: Comparison with a global model. <i>Journal of Geophysical Research</i> , 2003 , 108, n/a-n/a	50
30	Application of empirical orthogonal functions to evaluate ozone simulations with regional and global models. <i>Journal of Geophysical Research</i> , 2003 , 108,	70
29	Sources of carbonaceous aerosols over the United States and implications for natural visibility. <i>Journal of Geophysical Research</i> , 2003 , 108,	411
28	Indonesian wildfires of 1997: Impact on tropospheric chemistry. <i>Journal of Geophysical Research</i> , 2003 , 108,	122
27	Seasonal and interannual variability of North American isoprene emissions as determined by formaldehyde column measurements from space. <i>Geophysical Research Letters</i> , 2003 , 30, n/a-n/a	100
26	Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns. <i>Journal of Geophysical Research</i> , 2003 , 108,	374
25	Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements. <i>Journals of the Atmospheric Sciences</i> , 2002 , 59, 461-483	1004
24	Tropical tropospheric ozone: Implications for dynamics and biomass burning. <i>Journal of Geophysical Research</i> , 2002 , 107, ACH 3-1	67
23	An improved retrieval of tropospheric nitrogen dioxide from GOME. <i>Journal of Geophysical Research</i> , 2002 , 107, ACH 9-1	293
22	Transatlantic transport of pollution and its effects on surface ozone in Europe and North America. Journal of Geophysical Research, 2002 , 107, ACH 4-1	220
21	Interpretation of TOMS observations of tropical tropospheric ozone with a global model and in situ observations. <i>Journal of Geophysical Research</i> , 2002 , 107, ACH 4-1	154
20	Sources of tropospheric ozone along the Asian Pacific Rim: An analysis of ozonesonde observations. <i>Journal of Geophysical Research</i> , 2002 , 107, ACH 3-1-ACH 3-19	107
19	Stratospheric versus pollution influences on ozone at Bermuda: Reconciling past analyses. <i>Journal of Geophysical Research</i> , 2002 , 107, ACH 1-1	49
18	Seasonal Forecasting for Climate Hazards: Prospects and Responses. <i>Natural Hazards</i> , 2001 , 23, 171-1963	33
17	Tropospheric formaldehyde measurements from the ESA GOME instrument 2001 , 4150, 1	
16	Air mass factor formulation for spectroscopic measurements from satellites: Application to formaldehyde retrievals from the Global Ozone Monitoring Experiment. <i>Journal of Geophysical Research</i> , 2001 , 106, 14539-14550	269
15	A tropospheric ozone maximum over the Middle East. <i>Geophysical Research Letters</i> , 2001 , 28, 3235-3238 _{4.9}	113

LIST OF PUBLICATIONS

-	14	Seasonal Maize Forecasting for South Africa and Zimbabwe Derived from an Agroclimatological Model. <i>Journal of Applied Meteorology and Climatology</i> , 2000 , 39, 1473-1479		34	
	13	Detection of a lightning influence on tropical tropospheric ozone. <i>Geophysical Research Letters</i> , 2000 , 27, 1639-1642	4.9	40	
-	12	Satellite observations of formaldehyde over North America from GOME. <i>Geophysical Research Letters</i> , 2000 , 27, 3461-3464	4.9	185	
5	11	Retrieving tropospheric nitrogen dioxide over China from the Ozone Monitoring Instrument: effects of aerosols, surface reflectance anisotropy and vertical profile of nitrogen dioxide		2	
-	10	Improved satellite retrievals of NO ₂ and SO ₂ over the Canadian oil sands and comparisons with surface measurements		3	
ر	9	Interpreting aerosol lifetimes using the GEOS-Chem model and constraints from radionuclide measurer	nents	2	
8	8	Evaluation of OMI operational standard NO ₂ column retrievals using in situ and surface-based NO ₂ observations		6	
7	7	Influence of aerosols and surface reflectance on satellite NO ₂ retrieval: seasonal and spatial characteristics and implications for NO _{<i>x</i>} emission constraints		4	
(6	Processes controlling the seasonal cycle of Arctic aerosol number and size distributions		4	
	5	Ammonia in the summertime Arctic marine boundary layer: sources, sinks and implications		5	
4	4	Evaluation and application of multi-decadal visibility data for trend analysis of atmospheric haze		2	
	3	Summertime sources of dimethyl sulfide in the Canadian Arctic Archipelago and Baffin Bay		2	
2	2	The importance of interstitial particle scavenging by cloud droplets in shaping the remote aerosol size distribution and global aerosol-climate effects		1	
-	ſ	Land cover change impacts on atmospheric chemistry: simulating projected large-scale tree mortality in the United States		1	