Miroslav Styblo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/844150/publications.pdf

Version: 2024-02-01

119 papers 9,863

53 h-index 98 g-index

122 all docs

122 docs citations

times ranked

122

5673 citing authors

#	Article	IF	Citations
1	The pharmacokinetics of therapeutic arsenic trioxide in acute promyelocytic leukemia patients. Leukemia and Lymphoma, 2022, 63, 653-663.	1.3	3
2	Candidate master microRNA regulator of arsenic-induced pancreatic beta cell impairment revealed by multi-omics analysis. Archives of Toxicology, 2022, 96, 1685-1699.	4.2	6
3	Arsenic 3 methyltransferase (AS3MT) automethylates on cysteine residues in vitro. Archives of Toxicology, 2022, 96, 1371-1386.	4.2	2
4	Maternal serum concentrations of one-carbon metabolism factors modify the association between biomarkers of arsenic methylation efficiency and birth weight. Environmental Health, 2022, 21, .	4.0	2
5	An interaction of inorganic arsenic exposure with body weight and composition on type 2 diabetes indicators in Diversity Outbred mice. Mammalian Genome, 2022, 33, 575-589.	2.2	4
6	Sex-dependent effects of preconception exposure to arsenite on gene transcription in parental germ cells and on transcriptomic profiles and diabetic phenotype of offspring. Archives of Toxicology, 2021, 95, 473-488.	4.2	7
7	Origins, fate, and actions of methylated trivalent metabolites of inorganic arsenic: progress and prospects. Archives of Toxicology, 2021, 95, 1547-1572.	4.2	42
8	Diverse genetic backgrounds play a prominent role in the metabolic phenotype of CC021/Unc and CC027/GeniUNC mice exposed to inorganic arsenic. Toxicology, 2021, 452, 152696.	4.2	2
9	Nutritional modulation of fetal susceptibility to iAs-associated gene expression underlying oxidative stress and inflammation in cord blood. ISEE Conference Abstracts, 2021, 2021, .	0.0	O
10	Metabolism of Inorganic Arsenic in Mice Lacking Genes Encoding GST-P, GST-M, and GST-T. Chemical Research in Toxicology, 2020, 33, 2043-2046.	3.3	3
11	Arsenic Metabolism in Mice Carrying a <i>BORCS7/AS3MT</i> Locus Humanized by Syntenic Replacement. Environmental Health Perspectives, 2020, 128, 87003.	6.0	27
12	Exposure to inorganic arsenic and its methylated metabolites alters metabolomics profiles in INS-1 832/13 insulinoma cells and isolated pancreatic islets. Archives of Toxicology, 2020, 94, 1955-1972.	4.2	17
13	Arsenite and its trivalent methylated metabolites inhibit glucose-stimulated calcium influx and insulin secretion in murine pancreatic islets. Archives of Toxicology, 2019, 93, 2525-2533.	4.2	20
14	Effects of Preconception and in Utero Inorganic Arsenic Exposure on the Metabolic Phenotype of Genetically Diverse Collaborative Cross Mice. Chemical Research in Toxicology, 2019, 32, 1487-1490.	3.3	7
15	Differential metabolism of inorganic arsenic in mice from genetically diverse Collaborative Cross strains. Archives of Toxicology, 2019, 93, 2811-2822.	4.2	15
16	Arsenic is more potent than cadmium or manganese in disrupting the INS-1 beta cell microRNA landscape. Archives of Toxicology, 2019, 93, 3099-3109.	4.2	20
17	Dose and Diet – Sources of Arsenic Intake in Mouse <i>in Utero</i> Exposure Scenarios. Chemical Research in Toxicology, 2018, 31, 156-164.	3.3	18
18	Prenatal arsenic exposure and dietary folate and methylcobalamin supplementation alter the metabolic phenotype of C57BL/6J mice in a sex-specific manner. Archives of Toxicology, 2018, 92, 1925-1937.	4.2	43

#	Article	lF	CITATIONS
19	Arsenite and methylarsonite inhibit mitochondrial metabolism and glucose-stimulated insulin secretion in INS-1 832/13 \hat{l}^2 cells. Archives of Toxicology, 2018, 92, 693-704.	4.2	39
20	Metabolic Phenotype of Wild-Type and <i>As3mt</i> -Knockout C57BL/6J Mice Exposed to Inorganic Arsenic: The Role of Dietary Fat and Folate Intake. Environmental Health Perspectives, 2018, 126, 127003.	6.0	22
21	Circulating miRNAs Associated with Arsenic Exposure. Environmental Science & Emp; Technology, 2018, 52, 14487-14495.	10.0	25
22	Impact of in vitro heavy metal exposure on pancreatic \hat{l}^2 -cell function. Toxicology Letters, 2018, 299, 137-144.	0.8	27
23	Maternal one carbon metabolism and arsenic methylation in a pregnancy cohort in Mexico. Journal of Exposure Science and Environmental Epidemiology, 2018, 28, 505-514.	3.9	19
24	Metabolomic profiles of arsenic (+3 oxidation state) methyltransferase knockout mice: effect of sex and arsenic exposure. Archives of Toxicology, 2017, 91, 189-202.	4.2	24
25	Arsenic Exposure and Type 2 Diabetes: MicroRNAs as Mechanistic Links?. Current Diabetes Reports, 2017, 17, 18.	4.2	30
26	Genetic and epigenetic mechanisms underlying arsenic-associated diabetes mellitus: a perspective of the current evidence. Epigenomics, 2017, 9, 701-710.	2.1	43
27	Efflux Transporters Regulate Arsenite-Induced Genotoxicity in Double Negative and Double Positive T Cells. Toxicological Sciences, 2017, 158, 127-139.	3.1	10
28	Neonatal Metabolomic Profiles Related to Prenatal Arsenic Exposure. Environmental Science & Emp; Technology, 2017, 51, 625-633.	10.0	30
29	Exposures to arsenite and methylarsonite produce insulin resistance and impair insulin-dependent glycogen metabolism in hepatocytes. Archives of Toxicology, 2017, 91, 3811-3821.	4.2	28
30	Genotoxicity induced by monomethylarsonous acid (MMA $+3$) in mouse thymic developing T cells. Toxicology Letters, 2017, 279, 60-66.	0.8	14
31	Direct Speciation Analysis of Arsenic in Whole Blood and Blood Plasma at Low Exposure Levels by Hydride Generation-Cryotrapping-Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2017, 89, 9633-9637.	6.5	39
32	Knockout of arsenic (+3 oxidation state) methyltransferase is associated with adverse metabolic phenotype in mice: the role of sex and arsenic exposure. Archives of Toxicology, 2017, 91, 2617-2627.	4.2	36
33	The Association of Arsenic Exposure and Metabolism With Type 1 and Type 2 Diabetes in Youth: The SEARCH Case-Control Study. Diabetes Care, 2017, 40, 46-53.	8.6	61
34	Chronic Exposure to Arsenic and Markers of Cardiometabolic Risk: A Cross-Sectional Study in Chihuahua, Mexico. Environmental Health Perspectives, 2016, 124, 104-111.	6.0	96
35	Expression of the Longest RGS4 Splice Variant in the Prefrontal Cortex Is Associated with Single Nucleotide Polymorphisms in Schizophrenia Patients. Frontiers in Psychiatry, 2016, 7, 26.	2.6	8
36	Association Between Variants in Arsenic (+3 Oxidation State) Methyltranserase (<i>AS3MT</i>) and Urinary Metabolites of Inorganic Arsenic: Role of Exposure Level. Toxicological Sciences, 2016, 153, 112-123.	3.1	14

#	Article	ΙF	Citations
37	Knockout of arsenic (+3 oxidation state) methyltransferase results in sex-dependent changes in phosphatidylcholine metabolism in mice. Archives of Toxicology, 2016, 90, 3125-3128.	4.2	6
38	Oxidation state specific analysis of arsenic species in tissues of wild-type and arsenic (+ 3 oxidation) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
39	Differential sensitivities of bone marrow, spleen and thymus to genotoxicity induced by environmentally relevant concentrations of arsenite. Toxicology Letters, 2016, 262, 55-61.	0.8	26
40	Phase I and pharmacokinetic evaluation of the anti-telomerase agent KML-001 with cisplatin in advanced solid tumors. Cancer Chemotherapy and Pharmacology, 2016, 78, 959-967.	2.3	9
41	Biological and behavioral factors modify urinary arsenic metabolic profiles in a U.S. population. Environmental Health, 2016, 15, 62.	4.0	43
42	Analysis of maternal polymorphisms in arsenic (+3 oxidation state)-methyltransferase AS3MT and fetal sex in relation to arsenic metabolism and infant birth outcomes: Implications for risk analysis. Reproductive Toxicology, 2016, 61, 28-38.	2.9	26
43	A Concurrent Exposure to Arsenic and Fluoride from Drinking Water in Chihuahua, Mexico. International Journal of Environmental Research and Public Health, 2015, 12, 4587-4601.	2.6	71
44	Identification of Novel Gene Targets and Putative Regulators of Arsenic-Associated DNA Methylation in Human Urothelial Cells and Bladder Cancer. Chemical Research in Toxicology, 2015, 28, 1144-1155.	3.3	26
45	Prenatal Arsenic Exposure and the Epigenome: Identifying Sites of 5-methylcytosine Alterations that Predict Functional Changes in Gene Expression in Newborn Cord Blood and Subsequent Birth Outcomes. Toxicological Sciences, 2015, 143, 97-106.	3.1	157
46	Metabolomic Characteristics of Arsenic-Associated Diabetes in a Prospective Cohort in Chihuahua, Mexico. Toxicological Sciences, 2015, 144, 338-346.	3.1	44
47	Maternal Arsenic Exposure, Arsenic Methylation Efficiency, and Birth Outcomes in the Biomarkers of Exposure to ARsenic (BEAR) Pregnancy Cohort in Mexico. Environmental Health Perspectives, 2015, 123, 186-192.	6.0	121
48	Associations between Arsenic Species in Exfoliated Urothelial Cells and Prevalence of Diabetes among Residents of Chihuahua, Mexico. Environmental Health Perspectives, 2014, 122, 1088-1094.	6.0	48
49	Prenatal arsenic exposure and the epigenome: Altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood. Environmental and Molecular Mutagenesis, 2014, 55, 196-208.	2.2	171
50	Speciation Analysis of Arsenic by Selective Hydride Generation-Cryotrapping-Atomic Fluorescence Spectrometry with Flame-in-Gas-Shield Atomizer: Achieving Extremely Low Detection Limits with Inexpensive Instrumentation. Analytical Chemistry, 2014, 86, 10422-10428.	6.5	50
51	Selective hydride generation-cryotrapping-ICP-MS for arsenic speciation analysis at picogram levels: analysis of river and sea water reference materials and human bladder epithelial cells. Journal of Analytical Atomic Spectrometry, 2013, 28, 1456.	3.0	47
52	Comparative oxidation state specific analysis of arsenic species by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry and hydride generation-cryotrapping-atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 2013, 28, 843.	3.0	19
53	Methylated trivalent arsenicals are potent inhibitors of glucose stimulated insulin secretion by murine pancreatic islets. Toxicology and Applied Pharmacology, 2013, 267, 11-15.	2.8	98
54	Arsenic and the Epigenome: Interindividual Differences in Arsenic Metabolism Related to Distinct Patterns of DNA Methylation. Journal of Biochemical and Molecular Toxicology, 2013, 27, 106-115.	3.0	97

#	Article	IF	CITATIONS
55	Environmental exposure to arsenic, AS3MT polymorphism and prevalence of diabetes in Mexico. Journal of Exposure Science and Environmental Epidemiology, 2013, 23, 151-155.	3.9	51
56	Bâ€vitamins influence arsenic metabolism in Mexico. FASEB Journal, 2013, 27, 1077.20.	0.5	1
57	Evaluation of the Association between Arsenic and Diabetes: A National Toxicology Program Workshop Review. Environmental Health Perspectives, 2012, 120, 1658-1670.	6.0	299
58	Identification of the GST-T1 and GST-M1Null Genotypes Using High Resolution Melting Analysis. Chemical Research in Toxicology, 2012, 25, 216-224.	3.3	8
59	Methylation of arsenic by recombinant human wild-type arsenic (+ 3 oxidation state) methyltransferase and its methionine 287 threonine (M287T) polymorph: Role of glutathione. Toxicology and Applied Pharmacology, 2012, 264, 121-130.	2.8	46
60	The epigenetic effects of a high prenatal folate intake in male mouse fetuses exposed in utero to arsenic. Toxicology and Applied Pharmacology, 2012, 264, 439-450.	2.8	54
61	Direct analysis and stability of methylated trivalent arsenic metabolites in cells and tissues. Metallomics, 2011, 3, 1347.	2.4	29
62	Direct Analysis of Methylated Trivalent Arsenicals in Mouse Liver by Hydride Generation-Cryotrapping-Atomic Absorption Spectrometry. Chemical Research in Toxicology, 2011, 24, 478-480.	3.3	32
63	Epigenetic Changes in Individuals with Arsenicosis. Chemical Research in Toxicology, 2011, 24, 165-167.	3.3	147
64	Exposure to arsenic in drinking water is associated with increased prevalence of diabetes: a cross-sectional study in the Zimap \tilde{A}_i n and Lagunera regions in Mexico. Environmental Health, 2011, 10, 73.	4.0	182
65	Characterization of the Impaired Glucose Homeostasis Produced in C57BL/6 Mice by Chronic Exposure to Arsenic and High-Fat Diet. Environmental Health Perspectives, 2011, 119, 1104-1109.	6.0	116
66	Metabolism of arsenic in human liver: the role of membrane transporters. Archives of Toxicology, 2010, 84, 3-16.	4.2	111
67	Interspecies differences in metabolism of arsenic by cultured primary hepatocytes. Toxicology and Applied Pharmacology, 2010, 245, 47-56.	2.8	56
68	Arsenic (+3 oxidation state) methyltransferase genotype affects steady-state distribution and clearance of arsenic in arsenate-treated mice. Toxicology and Applied Pharmacology, 2010, 249, 217-223.	2.8	63
69	Requirement of Arsenic Biomethylation for Oxidative DNA Damage. Journal of the National Cancer Institute, 2009, 101, 1670-1681.	6.3	110
70	Association of AS3MT polymorphisms and the risk of premalignant arsenic skin lesions. Toxicology and Applied Pharmacology, 2009, 239, 200-207.	2.8	104
71	Disruption of the Arsenic (+3 Oxidation State) Methyltransferase Gene in the Mouse Alters the Phenotype for Methylation of Arsenic and Affects Distribution and Retention of Orally Administered Arsenate. Chemical Research in Toxicology, 2009, 22, 1713-1720.	3.3	145
72	An Overview of Arsenic Metabolism and Toxicity. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2009, 42, 4.31.1-4.31.6.	1.1	55

#	Article	IF	CITATIONS
73	Analysis of Arsenical Metabolites in Biological Samples. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2009, 42, 4.33.1-4.33.17.	1.1	6
74	Oxidation state specific generation of arsines from methylated arsenicals based on l-cysteine treatment in buffered media for speciation analysis by hydride generation-automated cryotrapping-gas chromatography-atomic absorption spectrometry with the multiatomizer. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 396-406.	2.9	81
75	Tissue dosimetry, metabolism and excretion of pentavalent and trivalent dimethylated arsenic in mice after oral administration. Toxicology and Applied Pharmacology, 2008, 227, 26-35.	2.8	47
76	Speciation analysis of arsenic in biological matrices by automated hydride generation-cryotrapping-atomic absorption spectrometry with multiple microflame quartz tube atomizer (multiatomizer). Journal of Analytical Atomic Spectrometry, 2008, 23, 342-351.	3.0	102
77	Speciation of Arsenic in Exfoliated Urinary Bladder Epithelial Cells from Individuals Exposed to Arsenic in Drinking Water. Environmental Health Perspectives, 2008, 116, 1656-1660.	6.0	33
78	Environmental arsenic as a disruptor of insulin signaling. Me, 2008, 10, 1-7.	1.0	16
79	Molecular Mechanisms of the Diabetogenic Effects of Arsenic: Inhibition of Insulin Signaling by Arsenite and Methylarsonous Acid. Environmental Health Perspectives, 2007, 115, 734-742.	6.0	138
80	Examination of the effects of arsenic on glucose homeostasis in cell culture and animal studies: Development of a mouse model for arsenic-induced diabetes. Toxicology and Applied Pharmacology, 2007, 222, 305-314.	2.8	121
81	Activation of superoxide dismutase in selenium-deficient mice infected with influenza virus. Journal of Trace Elements in Medicine and Biology, 2007, 21, 52-62.	3.0	21
82	Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals. Experimental Biology and Medicine, 2007, 232, 3-13.	2.4	179
83	shRNA Silencing of AS3MT Expression Minimizes Arsenic Methylation Capacity of HepG2 Cells. Chemical Research in Toxicology, 2006, 19, 894-898.	3.3	74
84	Methylarsonous Acid Transport by Aquaglyceroporins. Environmental Health Perspectives, 2006, 114, 527-531.	6.0	66
85	Selenoprotein P is not essential for an effective immune response to influenza infection in mice. FASEB Journal, 2006, 20, A1067.	0.5	O
86	Glutathione-S-transferase π inhibits As2O3-induced apoptosis in lymphoma cells: involvement of hydrogen peroxide catabolism. Blood, 2005, 105, 1198-1203.	1.4	60
87	Molecular events associated with arsenic-induced malignant transformation of human prostatic epithelial cells: aberrant genomic DNA methylation and K-ras oncogene activation. Toxicology and Applied Pharmacology, 2005, 206, 288-298.	2.8	155
88	Arsenic (+3 oxidation state) methyltransferase and the inorganic arsenic methylation phenotype. Toxicology and Applied Pharmacology, 2005, 204, 164-169.	2.8	60
89	Metabolism and toxicity of arsenic in human urothelial cells expressing rat arsenic (+3 oxidation) Tj ETQq1 1 0.78	84314 rgB ⁻ 2.8	Г /Overlock 1 122
90	Tissue dosimetry, metabolism and excretion of pentavalent and trivalent monomethylated arsenic in mice after oral administration. Toxicology and Applied Pharmacology, 2005, 208, 186-197.	2.8	49

#	Article	IF	Citations
91	Elucidating the pathway for arsenic methylation*1. Toxicology and Applied Pharmacology, 2004, 198, 319-326.	2.8	262
92	Inhibition of insulin-dependent glucose uptake by trivalent arsenicals: possible mechanism of arsenic-induced diabetes. Toxicology and Applied Pharmacology, 2004, 198, 424-433.	2.8	161
93	Interindividual variation in the metabolism of arsenic in cultured primary human hepatocytes. Toxicology and Applied Pharmacology, 2004, 201, 166-177.	2.8	78
94	Glutathione Modulates Recombinant Rat Arsenic (+3 Oxidation State) Methyltransferase-Catalyzed Formation of Trimethylarsine Oxide and Trimethylarsine. Chemical Research in Toxicology, 2004, 17, 1621-1629.	3.3	63
95	Endogenous Reductants Support the Catalytic Function of Recombinant Rat Cyt19, an Arsenic Methyltransferase. Chemical Research in Toxicology, 2004, 17, 404-409.	3.3	111
96	Comprehensive analysis of arsenic metabolites by pH-specific hydride generation atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 2004, 19, 1460-1467.	3.0	69
97	Arsenite induces delayed mutagenesis and transformation in human osteosarcoma cells at extremely low concentrations. Environmental and Molecular Mutagenesis, 2003, 41, 322-331.	2.2	43
98	Selenium Compounds Modulate the Activity of Recombinant Rat AsIII-Methyltransferase and the Methylation of Arsenite by Rat and Human Hepatocytes. Chemical Research in Toxicology, 2003, 16, 261-265.	3.3	78
99	Differential activation of APâ€1 in human bladder epithelial cells by inorganic and methylated arsenicals. FASEB Journal, 2003, 17, 67-69.	0.5	70
100	Metabolism of arsenic and gene transcription regulation. , 2003, , 267-281.		2
101	Methylated metabolites of arsenic trioxide are more potent than arsenic trioxide as apoptotic but not differentiation inducers in leukemia and lymphoma cells. Cancer Research, 2003, 63, 1853-9.	0.9	76
102	A Novel S-Adenosyl-I-methionine: Arsenic (III) Methyltransferase from Rat Liver Cytosol. Journal of Biological Chemistry, 2002, 277, 10795-10803.	3.4	299
103	The role of biomethylation in toxicity and carcinogenicity of arsenic: a research update Environmental Health Perspectives, 2002, 110, 767-771.	6.0	296
104	Pharmacokinetic modeling of arsenite uptake and metabolism in hepatocytes-mechanistic insights and implications for further experiments. Journal of Pharmacokinetics and Pharmacodynamics, 2002, 29, 207-234.	1.8	18
105	Methylated Trivalent Arsenic Species Are Genotoxic. Chemical Research in Toxicology, 2001, 14, 355-361.	3.3	479
106	Arsenicals Inhibit Thioredoxin Reductase in Cultured Rat Hepatocytes. Chemical Research in Toxicology, 2001, 14, 305-311.	3.3	152
107	Selenium Modifies the Metabolism and Toxicity of Arsenic in Primary Rat Hepatocytes. Toxicology and Applied Pharmacology, 2001, 172, 52-61.	2.8	87
108	Differential Effects of Trivalent and Pentavalent Arsenicals on Cell Proliferation and Cytokine Secretion in Normal Human Epidermal Keratinocytes. Toxicology and Applied Pharmacology, 2001, 172, 225-232.	2.8	257

7

#	Article	IF	CITATIONS
109	Determination of Trivalent Methylated Arsenicals in Biological Matrices. Toxicology and Applied Pharmacology, 2001, 174, 282-293.	2.8	217
110	The Cellular Metabolism and Systemic Toxicity of Arsenic. Toxicology and Applied Pharmacology, 2001, 176, 127-144.	2.8	540
111	Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Archives of Toxicology, 2000, 74, 289-299.	4.2	881
112	Metabolism of Arsenic in Primary Cultures of Human and Rat Hepatocytes. Chemical Research in Toxicology, 1999, 12, 560-565.	3.3	132
113	Metabolism and Toxicity of Arsenicals in Cultured Cells. , 1999, , 311-323.		15
114	Comparative Inhibition of Yeast Glutathione Reductase by Arsenicals and Arsenothiols. Chemical Research in Toxicology, 1997, 10, 27-33.	3.3	272
115	Binding of Arsenicals to Proteins in anin VitroMethylation System. Toxicology and Applied Pharmacology, 1997, 147, 1-8.	2.8	87
116	Mono- and dimethylation of arsenic in rat liver cytosol in vitro. Chemico-Biological Interactions, 1996, 99, 147-164.	4.0	90
117	Liberation and analysis of protein-bound arsenicals. Biomedical Applications, 1996, 677, 161-166.	1.7	59
118	Time dependence of accumulation and binding of inorganic and organic arsenic species in rabbit erythrocytes. Chemico-Biological Interactions, 1995, 98, 69-83.	4.0	45
119	Complexation of Arsenic Species in Rabbit Erythrocytes. Chemical Research in Toxicology, 1994, 7, 621-627.	3.3	91