Lachlan H Thompson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8441168/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Creation of GMP-Compliant iPSCs From Banked Umbilical Cord Blood. Frontiers in Cell and Developmental Biology, 2022, 10, 835321.	1.8	6
2	A combined cell and gene therapy approach for homotopic reconstruction of midbrain dopamine pathways using human pluripotent stem cells. Cell Stem Cell, 2022, 29, 434-448.e5.	5.2	23
3	Understanding the Influence of Target Acquisition on Survival, Integration, and Phenotypic Maturation of Dopamine Neurons within Stem Cell-Derived Neural Grafts in a Parkinson's Disease Model. Journal of Neuroscience, 2022, 42, 4995-5006.	1.7	4
4	In Vivo Survival and Differentiation of Friedreich Ataxia iPSC-Derived Sensory Neurons Transplanted in the Adult Dorsal Root Ganglia. Stem Cells Translational Medicine, 2021, 10, 1157-1169.	1.6	4
5	Focal Ischemic Injury to the Early Neonatal Rat Brain Models Cognitive and Motor Deficits with Associated Histopathological Outcomes Relevant to Human Neonatal Brain Injury. International Journal of Molecular Sciences, 2021, 22, 4740.	1.8	2
6	Human stem cells harboring a suicide gene improve theÂsafety and standardisation of neural transplants in Parkinsonian rats. Nature Communications, 2021, 12, 3275.	5.8	21
7	FGF-MAPK signaling regulates human deep-layer corticogenesis. Stem Cell Reports, 2021, 16, 1262-1275.	2.3	12
8	Longitudinal hippocampal volumetric changes in mice following brain infarction. Scientific Reports, 2021, 11, 10269.	1.6	5
9	Tissue Programmed Hydrogels Functionalized with GDNF Improve Human Neural Grafts in Parkinson's Disease. Advanced Functional Materials, 2021, 31, 2105301.	7.8	16
10	Histological characterization and quantification of newborn cells in the adult rodent brain. STAR Protocols, 2021, 2, 100614.	0.5	2
11	Hemispheric cortical atrophy and chronic microglial activation following mild focal ischemic stroke in adult male rats. Journal of Neuroscience Research, 2021, 99, 3222-3237.	1.3	6
12	An Optimized Protocol for the Generation of Midbrain Dopamine Neurons under Defined Conditions. STAR Protocols, 2020, 1, 100065.	0.5	18
13	Ischemic Injury Does Not Stimulate Striatal Neuron Replacement Even during Periods of Active Striatal Neurogenesis. IScience, 2020, 23, 101175.	1.9	3
14	Capturing longitudinal impacts on cognition following stroke in rodent models using touchscreen testing. Alzheimer's and Dementia, 2020, 16, e044156.	0.4	0
15	Unprecedented Potential for Neural Drug Discovery Based on Self-Organizing hiPSC Platforms. Molecules, 2020, 25, 1150.	1.7	7
16	Viral Delivery of GDNF Promotes Functional Integration of Human Stem Cell Grafts in Parkinson's Disease. Cell Stem Cell, 2020, 26, 511-526.e5.	5.2	56
17	Novel pluripotent stem cell lines for enriched grafting in Parkinson's disease. Neural Regeneration Research, 2020, 15, 255.	1.6	2
18	Transcriptional Profiling of Xenogeneic Transplants: Examining Human Pluripotent Stem Cell-Derived Grafts in the Rodent Brain, Stem Cell Reports, 2019, 13, 877-890.	2.3	7

#	Article	IF	CITATIONS
19	Isolation of LMX1a Ventral Midbrain Progenitors Improves the Safety and Predictability of Human Pluripotent Stem Cell-Derived Neural Transplants in Parkinsonian Disease. Journal of Neuroscience, 2019, 39, 9521-9531.	1.7	23
20	Axonal Growth of Midbrain Dopamine Neurons is Modulated by the Cell Adhesion Molecule ALCAM Through <i>Trans</i> -Heterophilic Interactions with L1cam, Chl1, and Semaphorins. Journal of Neuroscience, 2019, 39, 6656-6667.	1.7	20
21	Long-Term Motor Deficit and Diffuse Cortical Atrophy Following Focal Cortical Ischemia in Athymic Rats. Frontiers in Cellular Neuroscience, 2019, 13, 552.	1.8	6
22	Modelling the dopamine and noradrenergic cell loss that occurs in Parkinson's disease and the impact on hippocampal neurogenesis. Hippocampus, 2018, 28, 327-337.	0.9	20
23	Local Injection of Endothelin-1 in the Early Neonatal Rat Brain Models Ischemic Damage Associated with Motor Impairment and Diffuse Loss in Brain Volume. Neuroscience, 2018, 393, 110-122.	1.1	3
24	Shear Containment of BDNF within Molecular Hydrogels Promotes Human Stem Cell Engraftment and Postinfarction Remodeling in Stroke. Advanced Biology, 2018, 2, 1800113.	3.0	28
25	Long-Distance Axonal Growth and Protracted Functional Maturation of Neurons Derived from Human Induced Pluripotent Stem Cells After Intracerebral Transplantation. Stem Cells Translational Medicine, 2017, 6, 1547-1556.	1.6	21
26	Peptide-Based Scaffolds Support Human Cortical Progenitor Graft Integration to Reduce Atrophy and Promote Functional Repair in a Model of Stroke. Cell Reports, 2017, 20, 1964-1977.	2.9	88
27	A PITX3 -EGFP Reporter Line Reveals Connectivity of Dopamine and Non-dopamine Neuronal Subtypes in Grafts Generated from Human Embryonic Stem Cells. Stem Cell Reports, 2017, 9, 868-882.	2.3	32
28	Specification of murine ground state pluripotent stem cells to regional neuronal populations. Scientific Reports, 2017, 7, 16001.	1.6	7
29	Efficiently Specified Ventral Midbrain Dopamine Neurons from Human Pluripotent Stem Cells Under Xeno-Free Conditions Restore Motor Deficits in Parkinsonian Rodents. Stem Cells Translational Medicine, 2017, 6, 937-948.	1.6	55
30	Over-Expression of Meteorin Drives Gliogenesis Following Striatal Injury. Frontiers in Cellular Neuroscience, 2016, 10, 177.	1.8	7
31	Combined immunohistochemical and retrograde tracing reveals little evidence of innervation of the rat dentate gyrus by midbrain dopamine neurons. Frontiers in Biology, 2016, 11, 246-255.	0.7	7
32	Are Stem Cell-Based Therapies for Parkinson's Disease Ready for the Clinic in 2016?. Journal of Parkinson's Disease, 2016, 6, 57-63.	1.5	57
33	Transcriptome analysis reveals transmembrane targets on transplantable midbrain dopamine progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1946-E1955.	3.3	52
34	Meningeal cells influence midbrain development and the engraftment of dopamine progenitors in Parkinsonian mice. Experimental Neurology, 2015, 267, 30-41.	2.0	12
35	Reconstruction of brain circuitry by neural transplants generated from pluripotent stem cells. Neurobiology of Disease, 2015, 79, 28-40.	2.1	56
36	Chondroitinase improves midbrain pathway reconstruction by transplanted dopamine progenitors in Parkinsonian mice. Molecular and Cellular Neurosciences, 2015, 69, 22-29.	1.0	23

LACHLAN H THOMPSON

#	Article	IF	CITATIONS
37	Differential Dopamine Receptor Occupancy Underlies L-DOPA-Induced Dyskinesia in a Rat Model of Parkinson's Disease. PLoS ONE, 2014, 9, e90759.	1.1	16
38	Functional Characterization of Friedreich Ataxia iPS-Derived Neuronal Progenitors and Their Integration in the Adult Brain. PLoS ONE, 2014, 9, e101718.	1.1	27
39	Modulating Wnt signaling to improve cell replacement therapy for Parkinson's disease. Journal of Molecular Cell Biology, 2014, 6, 54-63.	1.5	31
40	Hippocampal Lewy pathology and cholinergic dysfunction are associated with dementia in Parkinson's disease. Brain, 2014, 137, 2493-2508.	3.7	232
41	Trophic factors differentiate dopamine neurons vulnerable to Parkinson's disease. Neurobiology of Aging, 2013, 34, 873-886.	1.5	44
42	Cell intrinsic and extrinsic factors contribute to enhance neural circuit reconstruction following transplantation in Parkinsonian mice. Journal of Physiology, 2013, 591, 77-91.	1.3	33
43	Generation of striatal projection neurons extends into the neonatal period in the rat brain. Journal of Physiology, 2013, 591, 67-76.	1.3	7
44	Developing stem cell-based therapies for neural repair. Frontiers in Cellular Neuroscience, 2013, 7, 198.	1.8	1
45	Transplantation of Fetal Midbrain Dopamine Progenitors into a Rodent Model of Parkinson's Disease. Methods in Molecular Biology, 2013, 1059, 169-180.	0.4	21
46	Glycogen Synthase Kinase 3β and Activin/Nodal Inhibition in Human Embryonic Stem Cells Induces a Pre-Neuroepithelial State That Is Required for Specification to a Floor Plate Cell Lineage. Stem Cells, 2012, 30, 2400-2411.	1.4	51
47	Survival, differentiation, and connectivity of ventral mesencephalic dopamine neurons following transplantation. Progress in Brain Research, 2012, 200, 61-95.	0.9	25
48	Neurons derived from human embryonic stem cells extend long-distance axonal projections through growth along host white matter tracts after intra-cerebral transplantation. Frontiers in Cellular Neuroscience, 2012, 6, 11.	1.8	41
49	GIRK2 expression in dopamine neurons of the substantia nigra and ventral tegmental area. Journal of Comparative Neurology, 2012, 520, 2591-2607.	0.9	76
50	Cometin is a novel neurotrophic factor that promotes neurite outgrowth and neuroblast migration in vitro and supports survival of spiral ganglion neurons in vivo. Experimental Neurology, 2012, 233, 172-181.	2.0	52
51	Birth dating of midbrain dopamine neurons identifies A9 enriched tissue for transplantation into Parkinsonian mice. Experimental Neurology, 2012, 236, 58-68.	2.0	82
52	Lentiviral delivery of Meteorin protects striatal neurons against excitotoxicity and reverses motor deficits in the quinolinic acid rat model. Neurobiology of Disease, 2011, 41, 160-168.	2.1	20
53	Gli1 Is an Inducing Factor in Generating Floor Plate Progenitor Cells from Human Embryonic Stem Cells Â. Stem Cells, 2010, 28, 1805-1815.	1.4	24
54	The A9 dopamine neuron component in grafts of ventral mesencephalon is an important determinant for recovery of motor function in a rat model of Parkinson's disease. Brain, 2010, 133, 482-495.	3.7	125

LACHLAN H THOMPSON

#	Article	IF	CITATIONS
55	Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7613-7618.	3.3	196
56	Characterization of Meteorin—An Evolutionary Conserved Neurotrophic Factor. Journal of Molecular Neuroscience, 2009, 39, 104-116.	1.1	38
57	Reconstruction of the nigrostriatal dopamine pathway in the adult mouse brain. European Journal of Neuroscience, 2009, 30, 625-638.	1.2	116
58	Identification of transplantable dopamine neuron precursors at different stages of midbrain neurogenesis. Experimental Neurology, 2009, 219, 341-354.	2.0	64
59	Transgenic reporter mice as tools for studies of transplantability and connectivity of dopamine neuron precursors in fetal tissue grafts. Progress in Brain Research, 2009, 175, 53-79.	0.9	5
60	In vivo gene delivery to proliferating cells in the striatum generated in response to a 6-hydroxydopamine lesion of the nigro-striatal dopamine pathway. Neurobiology of Disease, 2008, 30, 343-352.	2.1	5
61	Non-dopaminergic neurons in ventral mesencephalic transplants make widespread axonal connections in the host brain. Experimental Neurology, 2008, 213, 220-228.	2.0	23
62	Neurogenin2 identifies a transplantable dopamine neuron precursor in the developing ventral mesencephalon. Experimental Neurology, 2006, 198, 183-198.	2.0	44
63	Isolation and characterization of neural precursor cells from theSox1-GFP reporter mouse. European Journal of Neuroscience, 2005, 22, 1555-1569.	1.2	53
64	Functional properties and synaptic integration of genetically labelled dopaminergic neurons in intrastriatal grafts. European Journal of Neuroscience, 2005, 21, 2793-2799.	1.2	35
65	Gene marking of human neural stem/precursor cells using green fluorescent proteins. Journal of Gene Medicine, 2005, 7, 18-29.	1.4	14
66	Identification of Dopaminergic Neurons of Nigral and Ventral Tegmental Area Subtypes in Grafts of Fetal Ventral Mesencephalon Based on Cell Morphology, Protein Expression, and Efferent Projections. Journal of Neuroscience, 2005, 25, 6467-6477.	1.7	212
67	Dynamics of transgene expression in a neural stem cell line transduced with lentiviral vectors incorporating the cHS4 insulator. Experimental Cell Research, 2004, 298, 611-623.	1.2	36