Daniel Ramirez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8440574/publications.pdf

Version: 2024-02-01

28 papers 685

758635 12 h-index 26 g-index

28 all docs 28 docs citations

28 times ranked

1140 citing authors

#	Article	IF	CITATIONS
1	Current status and trends of carbon-based electrodes for fully solution-processed perovskite solar cells. Journal of Energy Chemistry, 2022, 68, 222-246.	7.1	29
2	An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles. Nature Energy, 2022, 7, 107-115.	19.8	136
3	Understanding the precursor chemistry for one-step deposition of mixed cation perovskite solar cells by methylamine route. Journal of Energy Chemistry, 2021, 57, 386-391.	7.1	9
4	Perovskite solar cells: New precursors and challenges for scaling-up., 2021,, 477-508.		1
5	Paraffin wax assisted chemical vapor deposited graphene transfer method. Thin Solid Films, 2021, 721, 138556.	0.8	7
6	The role of fiber-matrix compatibility in vacuum processed natural fiber/epoxy biocomposites. Cellulose, 2021, 28, 7845-7857.	2.4	4
7	Novel hybrid organic-inorganic CH3NH3NiCl3 active material for high-capacity and sustainable lithium-ion batteries. Electrochimica Acta, 2020, 357, 136882.	2.6	9
8	From Clay Minerals to Al2O3 Nanoparticles: Synthesis and Colloidal Stabilization for Optoelectronic Applications. Minerals (Basel, Switzerland), 2020, 10, 118.	0.8	4
9	Two-Dimensional Hybrid Halide Perovskite as Electrode Materials for All-Solid-State Lithium Secondary Batteries Based on Sulfide Solid Electrolytes. ACS Applied Energy Materials, 2019, 2, 6569-6576.	2.5	17
10	Mitigating scalability issues of perovskite photovoltaic technology through a p-i-n meso-superstructured solar cell architecture. Solar Energy Materials and Solar Cells, 2019, 195, 191-197.	3.0	16
11	Outdoor performance of perovskite solar technology: Silicon comparison and competitive advantages at different irradiances. Solar Energy Materials and Solar Cells, 2019, 191, 15-20.	3.0	32
12	Improved mechanical and antibacterial properties of thermoplastic polyurethanes by efficient double functionalization of silver nanoparticles. Journal of Applied Polymer Science, 2018, 135, 46180.	1.3	12
13	Structural and Electrochemical Evaluation of Three- and Two-Dimensional Organohalide Perovskites and Their Influence on the Reversibility of Lithium Intercalation. Inorganic Chemistry, 2018, 57, 4181-4188.	1.9	51
14	Photophysics behind highly luminescent two-dimensional hybrid perovskite (CH3(CH2)2NH3)2(CH3NH3)2Pb3Br10 thin films. Journal of Materials Chemistry C, 2018, 6, 6216-6221.	2.7	12
15	New nickel-based hybrid organic/inorganic metal halide for photovoltaic applications. Journal of Chemical Physics, 2018, 148, 244703.	1.2	5
16	Study of the Crystallization of Metal Halide Perovskites Containing Additives via Differential Scanning Calorimetry. Journal of Electronic Materials, 2018, 47, 6319-6327.	1.0	2
17	Low-cost semi-transparent copper sulfide electrode for indium-tin-oxide-free perovskite solar cells. Thin Solid Films, 2018, 662, 90-96.	0.8	8
18	Numerical Analysis to Determine Reliable One-Diode Model Parameters for Perovskite Solar Cells. Energies, 2018, 11, 1963.	1.6	14

#	Article	IF	CITATIONS
19	Layered Mixed Tin–Lead Hybrid Perovskite Solar Cells with High Stability. ACS Energy Letters, 2018, 3, 2246-2251.	8.8	64
20	Meso-Superstructured Perovskite Solar Cells: Revealing the Role of the Mesoporous Layer. Journal of Physical Chemistry C, 2018, 122, 21239-21247.	1.5	27
21	Optimization of the Ag/PCBM interface by a rhodamine interlayer to enhance the efficiency and stability of perovskite solar cells. Nanoscale, 2017, 9, 9440-9446.	2.8	57
22	Self-Functionalization Behind a Solution-Processed NiO _{<i>x</i>} Film Used As Hole Transporting Layer for Efficient Perovskite Solar Cells. ACS Applied Materials & Diterfaces, 2017, 9, 12348-12354.	4.0	65
23	Effect of cooling induced crystallization upon the properties of segmented thermoplastic polyurethanes. Journal of Polymer Engineering, 2017, 37, 471-480.	0.6	4
24	CH ₃ NH ₃ Cal ₃ Perovskite: Synthesis, Characterization, and First-Principles Studies. Journal of Physical Chemistry C, 2016, 120, 16393-16398.	1.5	67
25	Understanding the Role of the Mesoporous Layer in the Thermal Crystallization of a Meso-Superstructured Perovskite Solar Cell. Journal of Physical Chemistry C, 2016, 120, 8559-8567.	1.5	10
26	A calorimetric approach to reach high performance perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 146, 44-50.	3.0	14
27	Gel time and polymerization kinetics of unsaturated polyester resin/clay montmorillonite nanocomposites. Polymer Composites, 2015, 36, 1931-1940.	2.3	9
28	Design of two-dimensional perovskite solar cells with superior efficiency and stability. Revista Facultad De IngenierÃa, 0, , .	0.5	0