Zbigniew Klimont

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8440312/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5380-5552.	3.3	4,319
2	The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 2017, 42, 153-168.	7.8	2,966
3	How a century of ammonia synthesis changed the world. Nature Geoscience, 2008, 1, 636-639.	12.9	2,909
4	Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmospheric Chemistry and Physics, 2010, 10, 7017-7039.	4.9	2,020
5	Asian emissions in 2006 for the NASA INTEX-B mission. Atmospheric Chemistry and Physics, 2009, 9, 5131-5153.	4.9	1,982
6	A technology-based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research, 2004, 109, .	3.3	1,941
7	An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. Journal of Geophysical Research, 2003, 108, .	3.3	1,839
8	Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security. Science, 2012, 335, 183-189.	12.6	1,107
9	Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geoscientific Model Development, 2018, 11, 369-408.	3.6	1,058
10	Anthropogenic sulfur dioxide emissions: 1850–2005. Atmospheric Chemistry and Physics, 2011, 11, 1101-1116.	4.9	801
11	Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Climatic Change, 2011, 109, 163-190.	3.6	740
12	Atmospheric composition change – global and regional air quality. Atmospheric Environment, 2009, 43, 5268-5350.	4.1	714
13	HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmospheric Chemistry and Physics, 2015, 15, 11411-11432.	4.9	647
14	The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century. Global Environmental Change, 2017, 42, 251-267.	7.8	590
15	Evaluation of black carbon estimations in global aerosol models. Atmospheric Chemistry and Physics, 2009, 9, 9001-9026.	4.9	585
16	Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environmental Modelling and Software, 2011, 26, 1489-1501.	4.5	578
17	Global anthropogenic emissions of particulate matter including black carbon. Atmospheric Chemistry and Physics, 2017, 17, 8681-8723.	4.9	496
18	Atmospheric transport is a major pathway of microplastics to remote regions. Nature Communications, 2020, 11, 3381.	12.8	489

#	Article	IF	CITATIONS
19	Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets. Nature, 2017, 545, 467-471.	27.8	487
20	The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environmental Research Letters, 2013, 8, 014003.	5.2	461
21	Household Cooking with Solid Fuels Contributes to Ambient PM _{2.5} Air Pollution and the Burden of Disease. Environmental Health Perspectives, 2014, 122, 1314-1320.	6.0	381
22	Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7756-7761.	7.1	378
23	Evaluating the climate and air quality impacts of short-lived pollutants. Atmospheric Chemistry and Physics, 2015, 15, 10529-10566.	4.9	365
24	NO _x emissions in China: historical trends and future perspectives. Atmospheric Chemistry and Physics, 2013, 13, 9869-9897.	4.9	359
25	Global Air Quality and Health Co-benefits of Mitigating Near-Term Climate Change through Methane and Black Carbon Emission Controls. Environmental Health Perspectives, 2012, 120, 831-839.	6.0	340
26	Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions. Atmospheric Chemistry and Physics, 2013, 13, 8833-8855.	4.9	330
27	General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales. Atmospheric Chemistry and Physics, 2011, 11, 13061-13143.	4.9	278
28	Future air pollution in the Shared Socio-economic Pathways. Global Environmental Change, 2017, 42, 346-358.	7.8	277
29	Emission trends and mitigation options for air pollutants in East Asia. Atmospheric Chemistry and Physics, 2014, 14, 6571-6603.	4.9	269
30	Integrated Assessment of Nitrogen Losses from Agriculture in EUâ€27 using MITERRAâ€EUROPE. Journal of Environmental Quality, 2009, 38, 402-417.	2.0	245
31	Atmospheric composition change: Climate–Chemistry interactions. Atmospheric Environment, 2009, 43, 5138-5192.	4.1	243
32	Emission and speciation of non-methane volatile organic compounds from anthropogenic sources in China. Atmospheric Environment, 2008, 42, 4976-4988.	4.1	242
33	Costs and Benefits of Nitrogen for Europe and Implications for Mitigation. Environmental Science & Technology, 2013, 47, 3571-3579.	10.0	242
34	Constraining the atmospheric limb of the plastic cycle. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	232
35	Scenarios of global anthropogenic emissions of air pollutants and methane until 2030. Atmospheric Environment, 2007, 41, 8486-8499.	4.1	206
36	Anthropogenic emissions of non-methane volatile organic compounds in China. Atmospheric Environment, 2002, 36, 1309-1322.	4.1	203

#	Article	IF	CITATIONS
37	Pursuing air pollutant co-benefits of CO 2 mitigation in China: A provincial leveled analysis. Applied Energy, 2015, 144, 165-174.	10.1	199
38	Projections of SO ₂ , NO _x and carbonaceous aerosols emissions in Asia. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 602.	1.6	186
39	Integrated assessment of promising measures to decrease nitrogen losses from agriculture in EU-27. Agriculture, Ecosystems and Environment, 2009, 133, 280-288.	5.3	172
40	Modeling carbonaceous aerosol over Europe: Analysis of the CARBOSOL and EMEP EC/OC campaigns. Journal of Geophysical Research, 2007, 112, .	3.3	171
41	Regional and Global Emissions of Air Pollutants: Recent Trends and Future Scenarios. Annual Review of Environment and Resources, 2013, 38, 31-55.	13.4	166
42	Global and regional trends of atmospheric sulfur. Scientific Reports, 2019, 9, 953.	3.3	166
43	Source influence on emission pathways and ambient PM _{2.5} pollution over India (2015–2050). Atmospheric Chemistry and Physics, 2018, 18, 8017-8039.	4.9	148
44	Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: a multi-model evaluation using a comprehensive measurement data set. Atmospheric Chemistry and Physics, 2015, 15, 9413-9433.	4.9	145
45	From Acid Rain to Climate Change. Science, 2012, 338, 1153-1154.	12.6	135
46	Exploring the ancillary benefits of the Kyoto Protocol for air pollution in Europe. Energy Policy, 2006, 34, 444-460.	8.8	124
47	Verification of anthropogenic emissions of China by satellite and ground observations. Atmospheric Environment, 2011, 45, 6347-6358.	4.1	124
48	Projections of SO2, NOx, NH3 and VOC Emissions in East Asia Up to 2030. Water, Air, and Soil Pollution, 2001, 130, 193-198.	2.4	123
49	Primary emissions of fine carbonaceous particles in Europe. Atmospheric Environment, 2007, 41, 2156-2170.	4.1	120
50	Outlook for clean air in the context of sustainable development goals. Global Environmental Change, 2018, 53, 1-11.	7.8	119
51	Comparison of emissions inventories of anthropogenic air pollutants and greenhouse gases in China. Atmospheric Chemistry and Physics, 2017, 17, 6393-6421.	4.9	116
52	Major components of China's anthropogenic primary particulate emissions. Environmental Research Letters, 2007, 2, 045027.	5.2	115
53	Disentangling the effects of CO ₂ and short-lived climate forcer mitigation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16325-16330.	7.1	114
54	Integrated assessment of European air pollution emission control strategies. Environmental Modelling and Software, 1998, 14, 1-9.	4.5	109

#	Article	IF	CITATIONS
55	The 2020 China report of the Lancet Countdown on health and climate change. Lancet Public Health, The, 2021, 6, e64-e81.	10.0	106
56	Better air for better health: Forging synergies in policies for energy access, climate change and air pollution. Global Environmental Change, 2013, 23, 1122-1130.	7.8	99
57	Technical potentials and costs for reducing global anthropogenic methane emissions in the 2050 timeframe –results from the GAINS model. Environmental Research Communications, 2020, 2, 025004.	2.3	96
58	Projections of air pollutant emissions and its impacts on regional air quality in China in 2020. Atmospheric Chemistry and Physics, 2011, 11, 3119-3136.	4.9	94
59	How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?. Applied Energy, 2015, 156, 230-240.	10.1	93
60	Anthropogenic fugitive, combustion and industrial dust is a significant, underrepresented fine particulate matter source in global atmospheric models. Environmental Research Letters, 2017, 12, 044018.	5.2	91
61	The generation of gridded emissions data for CMIP6. Geoscientific Model Development, 2020, 13, 461-482.	3.6	88
62	European atmosphere in 2050, a regional air quality and climate perspective under CMIP5 scenarios. Atmospheric Chemistry and Physics, 2013, 13, 7451-7471.	4.9	87
63	Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the periodÂ1990–2015. Atmospheric Chemistry and Physics, 2017, 17, 2709-2720.	4.9	87
64	A chronology of global air quality. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190314.	3.4	87
65	Potential for future reductions of global GHG and air pollutants from circular waste management systems. Nature Communications, 2022, 13, 106.	12.8	86
66	Future air quality in Europe: a multi-model assessment of projected exposure to ozone. Atmospheric Chemistry and Physics, 2012, 12, 10613-10630.	4.9	81
67	Siberian Arctic black carbon sources constrained by model and observation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1054-E1061.	7.1	80
68	Integrating mitigation of air pollutants and greenhouse gases in Chinese cities: development of GAINS-City model for Beijing. Journal of Cleaner Production, 2013, 58, 25-33.	9.3	79
69	Technical opportunities to reduce global anthropogenic emissions of nitrous oxide. Environmental Research Letters, 2018, 13, 014011.	5.2	74
70	Summertime tropospheric ozone assessment over the Mediterranean region using the thermal infrared IASI/MetOp sounder and the WRF-Chem model. Atmospheric Chemistry and Physics, 2014, 14, 10119-10131.	4.9	73
71	A multi-model assessment of the co-benefits of climate mitigation for global air quality. Environmental Research Letters, 2016, 11, 124013.	5.2	72
72	Quantifying black carbon from biomass burning by means of levoglucosan – a one-year time series at the Arctic observatory Zeppelin. Atmospheric Chemistry and Physics, 2014, 14, 6427-6442.	4.9	71

#	Article	IF	CITATIONS
73	Reducing global air pollution: the scope for further policy interventions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190331.	3.4	70
74	Source apportionment of circum-Arctic atmospheric black carbon from isotopes and modeling. Science Advances, 2019, 5, eaau8052.	10.3	68
75	Mitigation pathways of air pollution from residential emissions in the Beijing-Tianjin-Hebei region in China. Environment International, 2019, 125, 236-244.	10.0	66
76	Continental anthropogenic primary particle number emissions. Atmospheric Chemistry and Physics, 2016, 16, 6823-6840.	4.9	65
77	Managing future air quality in megacities: A case study for Delhi. Atmospheric Environment, 2017, 161, 99-111.	4.1	63
78	Mitigation pathways towards national ambient air quality standards in India. Environment International, 2019, 133, 105147.	10.0	62
79	Environmental Modeling and Methods for Estimation of the Global Health Impacts of Air Pollution. Environmental Modeling and Assessment, 2012, 17, 613-622.	2.2	61
80	Modeling of elemental carbon over Europe. Journal of Geophysical Research, 2007, 112, .	3.3	60
81	Costs and global impacts of black carbon abatement strategies. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 625.	1.6	60
82	Reviews and syntheses: Arctic fire regimes and emissions in the 21st century. Biogeosciences, 2021, 18, 5053-5083.	3.3	59
83	Low-CO2 energy pathways and regional air pollution in Europe. Energy Policy, 2001, 29, 871-884.	8.8	58
84	Integrated modeling framework for assessment and mitigation of nitrogen pollution from agriculture: Concept and case study for China. Agriculture, Ecosystems and Environment, 2010, 136, 116-124.	5.3	58
85	A multi-scale health impact assessment of air pollution over the 21st century. Science of the Total Environment, 2015, 514, 439-449.	8.0	58
86	Costs and benefits of nitrogen in the environment. , 2011, , 513-540.		54
87	Moving towards ambitious climate policies: Monetised health benefits from improved air quality could offset mitigation costs in Europe. Environmental Science and Policy, 2015, 50, 252-269.	4.9	54
88	Air-pollution emission ranges consistent with the representative concentration pathways. Nature Climate Change, 2014, 4, 446-450.	18.8	52
89	Comparison and evaluation of anthropogenic emissions of SO ₂ and NO _{<i>x</i>} over China. Atmospheric Chemistry and Physics, 2018, 18, 3433-3456.	4.9	51
90	Emission inventory of non-methane volatile organic compounds from anthropogenic sources in India. Atmospheric Environment, 2015, 102, 209-219.	4.1	50

#	Article	IF	CITATIONS
91	EU low carbon roadmap 2050: Potentials and costs for mitigation ofÂnon-CO2 greenhouse gas emissions. Energy Strategy Reviews, 2012, 1, 97-108.	7.3	47
92	Exploring synergies between climate and air quality policies using long-term global and regional emission scenarios. Atmospheric Environment, 2016, 140, 577-591.	4.1	45
93	Evaluation of anthropogenic air pollutant emission inventories for South America at national and city scale. Atmospheric Environment, 2020, 235, 117606.	4.1	45
94	Evaluation of black carbon emission inventories using a Lagrangian dispersion model – a case study over southern India. Atmospheric Chemistry and Physics, 2015, 15, 1447-1461.	4.9	43
95	Short-lived uncertainty?. Nature Geoscience, 2010, 3, 587-588.	12.9	42
96	EURODELTA-Trends, a multi-model experiment of air quality hindcast in Europe over 1990–2010. Geoscientific Model Development, 2017, 10, 3255-3276.	3.6	41
97	Rapid reduction in black carbon emissions from China: evidence from 2009–2019 observations on Fukue Island, Japan. Atmospheric Chemistry and Physics, 2020, 20, 6339-6356.	4.9	41
98	Ammonia abatement and its impact on emissions of nitrous oxide and methane in Europe—Part 1: method. Atmospheric Environment, 2001, 35, 6299-6312.	4.1	39
99	Uncertainty analysis of emission estimates in the RAINS integrated assessment model. Environmental Science and Policy, 2005, 8, 601-613.	4.9	38
100	Uncertainties in emissions estimates of greenhouse gases and air pollutants in India and their impacts on regional air quality. Environmental Research Letters, 2017, 12, 065002.	5.2	38
101	Photochemical roles of rapid economic growth and potential abatement strategies on tropospheric ozone over South and East Asia in 2030. Atmospheric Chemistry and Physics, 2014, 14, 9259-9277.	4.9	33
102	Further Improvement of Air Quality in China Needs Clear Ammonia Mitigation Target. Environmental Science & Technology, 2019, 53, 10542-10544.	10.0	32
103	A Mineralogyâ€Based Anthropogenic Combustionâ€Iron Emission Inventory. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032114.	3.3	32
104	Role of export industries on ozone pollution and its precursors in China. Nature Communications, 2020, 11, 5492.	12.8	30
105	Ammonia abatement and its impact on emissions of nitrous oxide and methane—Part 2: application for Europe. Atmospheric Environment, 2001, 35, 6313-6325.	4.1	29
106	Energy Pathways for Sustainable Development. , 0, , 1205-1306.		29
107	Air quality in the mid-21st century for the city of Paris under two climate scenarios; from the regional to local scale. Atmospheric Chemistry and Physics, 2014, 14, 7323-7340.	4.9	29
108	SLCP co-control approach in East Asia: Tropospheric ozone reduction strategy by simultaneous reduction of NO x /NMVOC and methane. Atmospheric Environment, 2015, 122, 588-595.	4.1	29

#	Article	IF	CITATIONS
109	Global and regional climate impacts of black carbon and co-emitted species from the on-road diesel sector. Atmospheric Environment, 2014, 98, 50-58.	4.1	28
110	The role of N-gases (N2O, NOx, NH3) in cost-effective strategies to reduce greenhouse gas emissions and air pollution in Europe. Current Opinion in Environmental Sustainability, 2011, 3, 438-445.	6.3	27
111	Estimating environmentally relevant fixed nitrogen demand in the 21st century. Climatic Change, 2013, 120, 889-901.	3.6	27
112	Analysis of the air pollution reduction and climate change mitigation effects of the Three-Year Action Plan for Blue Skies on the "2+26―Cities in China. Journal of Environmental Management, 2022, 317, 115455.	7.8	26
113	Climate and air quality-driven scenarios of ozone and aerosol precursor abatement. Environmental Science and Policy, 2009, 12, 855-869.	4.9	25
114	New Directions: GEIA's 2020 vision for better air emissions information. Atmospheric Environment, 2013, 81, 710-712.	4.1	25
115	A continued role of short-lived climate forcers under the Shared Socioeconomic Pathways. Earth System Dynamics, 2020, 11, 977-993.	7.1	23
116	Co-benefits of black carbon mitigation for climate and air quality. Climatic Change, 2020, 163, 1519-1538.	3.6	22
117	Cost–Benefit Analysis of Reducing Premature Mortality Caused by Exposure to Ozone and PM2.5 in East Asia in 2020. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	20
118	Achieving Paris climate goals calls for increasing ambition of the Kigali Amendment. Nature Climate Change, 2022, 12, 339-342.	18.8	20
119	Air quality and health implications of 1.5 °C–2 °C climate pathways under considerations of ageing population: a multi-model scenario analysis. Environmental Research Letters, 2021, 16, 045005.	5.2	19
120	Integrated assessment of emission control scenarios, including the impact of tropospheric ozone. Water, Air, and Soil Pollution, 1995, 85, 2595-2600.	2.4	18
121	Corrigendum to "Evaluation of black carbon estimations in global aerosol models" published in Atmos. Chem. Phys., 9, 9001-9026, 2009. Atmospheric Chemistry and Physics, 2010, 10, 79-81.	4.9	17
122	Multi-model evaluation of short-lived pollutant distributions over east Asia during summer 2008. Atmospheric Chemistry and Physics, 2016, 16, 10765-10792.	4.9	17
123	Black carbon emissions from flaring in Russia in the period 2012–2017. Atmospheric Environment, 2021, 254, 118390.	4.1	17
124	Taking some heat off the NDCs? The limited potential of additional short-lived climate forcers' mitigation. Climatic Change, 2020, 163, 1443-1461.	3.6	16
125	Air quality impacts of European wildfire emissions in a changing climate. Atmospheric Chemistry and Physics, 2016, 16, 5685-5703.	4.9	15
126	Impact of methane and black carbon mitigation on forcing and temperature: a multi-model scenario analysis. Climatic Change, 2020, 163, 1427-1442.	3.6	15

#	Article	IF	CITATIONS
127	Model evaluation of short-lived climate forcers for the Arctic Monitoring and Assessment Programme: a multi-species, multi-model study. Atmospheric Chemistry and Physics, 2022, 22, 5775-5828.	4.9	15
128	Implications of population growth and urbanization on agricultural risks in China. Population and Environment, 2012, 33, 243-258.	3.0	14
129	Decadal Variabilities in Tropospheric Nitrogen Oxides Over United States, Europe, and China. Journal of Geophysical Research D: Atmospheres, 2022, 127, e2021JD035872.	3.3	14
130	Long-term scenarios for black and organic carbon emissions. Journal of Integrative Environmental Sciences, 2005, 2, 205-216.	0.8	12
131	Spatial distributions and seasonal cycles of aerosol climate effects in India seen in a global climate–aerosol model. Atmospheric Chemistry and Physics, 2014, 14, 10177-10192.	4.9	12
132	Present and future aerosol impacts on Arctic climate change in the GISS-E2.1 Earth system model. Atmospheric Chemistry and Physics, 2021, 21, 10413-10438.	4.9	12
133	Future scenarios of nitrogen in Europe. , 2011, , 551-569.		9
134	Co-benefits: taking a multidisciplinary approach. Carbon Management, 2013, 4, 135-137.	2.4	9
135	An emission inventory for the central European initiative 1988. Atmospheric Environment, 1994, 28, 235-246.	4.1	8
136	A Module to Calculate Primary Particulate Matter Emissions and Abatement Measures in Europe. Water, Air, and Soil Pollution, 2001, 130, 229-234.	2.4	8
137	Cost-effective reduction of fine primary particulate matter emissions in Finland. Environmental Research Letters, 2007, 2, 044002.	5.2	8
138	Sustainable wastewater management in Indonesia's fish processing industry: Bringing governance into scenario analysis. Journal of Environmental Management, 2020, 275, 111241.	7.8	8
139	Estimating Costs and Potential for Reduction of Ammonia Emissions from Agriculture in the GAINS Model. , 2015, , 233-261.		8
140	Impacts of emission reductions on aerosol radiative effects. Atmospheric Chemistry and Physics, 2015, 15, 5501-5519.	4.9	7
141	Environmental Consequences of Potential Strategies for China to Prepare for Natural Gas Import Disruptions. Environmental Science & Technology, 2022, 56, 1183-1193.	10.0	6
142	Dominance of the residential sector in Chinese black carbon emissions as identified from downwind atmospheric observations during the COVID-19 pandemic. Scientific Reports, 2021, 11, 23378.	3.3	6
143	å›åœ°è€Œå¼,的气候åĩ化å¥åº·å½±å"需è¦å›åœ°è€Œå¼,的应å⁻¹æŽªæ–½. Chinese Science Bulletin, 	2027,,.	5
144	Airborne nitrogen deposition to the Baltic Sea: Past trends, source allocation and future projections. Atmospheric Environment, 2021, 253, 118377.	4.1	5

#	Article	IF	CITATIONS
145	Detecting Change in Atmospheric Ammonia Following Emission Changes. , 2009, , 383-390.		5
146	The contribution of emission sources to the future air pollution disease burden in China. Environmental Research Letters, 2022, 17, 064027.	5.2	5
147	The Energy Modeling Forum (EMF)-30 study on short-lived climate forcers: introduction and overview. Climatic Change, 2020, 163, 1399-1408.	3.6	4
148	Future PM _{2.5} emissions from metal production to meet renewable energy demand. Environmental Research Letters, 2022, 17, 044043.	5.2	4
149	Costs and global impacts of black carbon abatement strategies. Tellus, Series B: Chemical and Physical Meteorology, 2009, 61, .	1.6	3
150	Ammonia Policy Context and Future Challenges. , 2009, , 433-443.		3
151	Atmospheric Composition Change. , 2012, , 309-365.		2
152	Energy and Environment. , 0, , 191-254.		2
153	Nonlinear impacts of future anthropogenic aerosol emissions on Arctic warming. Environmental Research Letters, 2019, 14, 034009.	5.2	2
154	An empirical approach toward the SLCP reduction targets in Asia for the mid-term climate change mitigation. Progress in Earth and Planetary Science, 2020, 7, .	3.0	1
155	Sustainable Agriculture in China: Estimation and Reduction of Nitrogen Impacts. Lecture Notes in Economics and Mathematical Systems, 2012, , 327-350.	0.3	Ο