Wenle Weng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8439518/publications.pdf

Version: 2024-02-01

	586496	651938
1,545	16	25
citations	h-index	g-index
20	20	1240
38	38	1349
docs citations	times ranked	citing authors
	1,545 citations 38 docs citations	1,545 16 citations h-index 38 38

#	Article	IF	CITATIONS
1	Microresonator Dissipative Kerr Solitons Synchronized to an Optoelectronic Oscillator. Physical Review Applied, 2022, 17 , .	1.5	7
2	Platicon microcomb generation using laser self-injection locking. Nature Communications, 2022, 13, 1771.	5.8	39
3	Low-noise frequency-agile photonic integrated lasers for coherent ranging. Nature Communications, 2022, 13, .	5 . 8	39
4	Dynamics of soliton self-injection locking in optical microresonators. Nature Communications, 2021, 12, 235.	5.8	86
5	Actuation bandwidth extension of an integrated piezo-optomechanical nanophotonic device., 2021,,.		O
6	Gain-switched semiconductor laser driven soliton microcombs. Nature Communications, 2021, 12, 1425.	5.8	27
7	Photonic chip-based resonant supercontinuum via pulse-driven Kerr microresonator solitons. Optica, 2021, 8, 771.	4.8	33
8	Zero-dispersion solitons in microresonators with octave-spanning dispersive wave formation. , 2021, , .		0
9	Optical Gyrator and Microwave-to-Optical Converter using HBAR modes. , 2021, , .		0
10	Low-noise, Frequency-agile, Hybrid Integrated Laser for LiDAR. , 2021, , .		0
11	Laser soliton microcombs heterogeneously integrated on silicon. Science, 2021, 373, 99-103.	6.0	173
12	Coherent terahertz-to-microwave link using electro-optic-modulated Turing rolls. Physical Review A, 2021, 104, .	1.0	3
13	Optical Gyrator and Microwave-to-Optical Converter using HBAR modes. , 2021, , .		O
14	Low-noise, Frequency-agile, Hybrid Integrated Lasers for LiDAR. , 2021, , .		4
15	Frequency division using a soliton-injected semiconductor gain-switched frequency comb. Science Advances, 2020, 6, .	4.7	21
16	Monolithic piezoelectric control of soliton microcombs. Nature, 2020, 583, 385-390.	13.7	109
17	Nanophotonic Supercontinuum Based Mid-Infrared Dual-Comb Spectroscopy. , 2020, , .		0
18	Microresonator soliton based massively parallel coherent LiDAR. , 2020, , .		0

#	Article	IF	CITATIONS
19	Massively parallel coherent laser ranging using a soliton microcomb. Nature, 2020, 581, 164-170.	13.7	325
20	Heteronuclear soliton molecules in optical microresonators. Nature Communications, 2020, 11, 2402.	5.8	56
21	Formation and Collision of Multistability-Enabled Composite Dissipative Kerr Solitons. Physical Review X, 2020, 10, .	2.8	15
22	Nanophotonic supercontinuum-based mid-infrared dual-comb spectroscopy. Optica, 2020, 7, 1181.	4.8	43
23	Nano-photonic Supercontinuum Based Mid-Infrared Dual-Comb Spectroscopy. , 2020, , .		0
24	Dynamics of soliton crystals in optical microresonators. Nature Physics, 2019, 15, 1071-1077.	6.5	148
25	Polychromatic Cherenkov Radiation Induced Group Velocity Symmetry Breaking in Counterpropagating Dissipative Kerr Solitons. Physical Review Letters, 2019, 123, 253902.	2.9	16
26	Nanophotonic Supercontinuum-Based Mid-Infrared Dual-Comb Spectroscopy. , 2019, , .		0
27	Spectral Purification of Microwave Signals with Disciplined Dissipative Kerr Solitons. Physical Review Letters, 2019, 122, 013902.	2.9	58
28	Visible-near-middle infrared spanning supercontinuum generation in a silicon nitride (Si ₃ N ₄) waveguide. Optical Materials Express, 2019, 9, 2553.	1.6	23
29	Nanophotonic supercontinuum based mid-infrared dual-comb spectroscopy., 2019,,.		1
30	Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nature Photonics, 2018, 12, 330-335.	15.6	201
31	Ultra-sensitive lithium niobate thermometer based on a dual-resonant whispering-gallery-mode cavity. Optics Letters, 2018, 43, 1415.	1.7	12
32	Visible-Near-Middle Infrared Spanning Supercontinuum Generation in a Silicon Nitride Waveguide. , 2018, , .		0
33	Refractometry with Ultralow Detection Limit Using Anisotropic Whispering-Gallery-Mode Resonators. Physical Review Applied, 2015, 3, .	1.5	11
34	Ultra-sensitive thermometer based on a compact optical resonator. Temperature, 2015, 2, 36-37.	1.7	0
35	Mode-interactions and polarization conversion in a crystalline microresonator. Optics Letters, 2015, 40, 5431.	1.7	16
36	Stabilization of a dynamically unstable opto-thermo-mechanical oscillator. Physical Review A, 2015, 91,	1.0	14

#	Article	IF	CITATIONS
37	Nano-Kelvin Thermometry and Temperature Control: Beyond the Thermal Noise Limit. Physical Review Letters, 2014, 112, 160801.	2.9	60