Mukat Lal Sharma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8439503/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ground-Motion Prediction Equations Based on Data from the Himalayan and Zagros Regions. Journal of Earthquake Engineering, 2009, 13, 1191-1210.	1.4	131
2	Global regression relations for conversion of surface wave and body wave magnitudes to moment magnitude. Natural Hazards, 2011, 59, 801-810.	1.6	116
3	Probabilistic seismic hazard map of NW Himalaya and its adjoining area, India. Natural Hazards, 2010, 53, 443-457.	1.6	96
4	Magnitude conversion problem using general orthogonal regression. Geophysical Journal International, 2012, 190, 1091-1096.	1.0	55
5	Magnitude conversion to unified moment magnitude using orthogonal regression relation. Journal of Asian Earth Sciences, 2012, 50, 44-51.	1.0	52
6	Occurrence of low stress drop earthquakes in the Garhwal Himalaya region. Physics of the Earth and Planetary Interiors, 1994, 85, 265-272.	0.7	51
7	Probabilistic Seismic Hazard Assessment for Northeast India Region. Pure and Applied Geophysics, 2016, 173, 2653-2670.	0.8	51
8	Estimation of Seismic Hazard Parameters for the Himalayas and its Vicinity from Complete Data Files. Pure and Applied Geophysics, 1998, 152, 267-279.	0.8	49
9	Seismic Zonation of the Delhi Region for Bedrock Ground Motion. Pure and Applied Geophysics, 2003, 160, 2381-2398.	0.8	48
10	General Orthogonal Regression Relations between Body-Wave and Moment Magnitudes. Seismological Research Letters, 2013, 84, 219-224.	0.8	47
11	Earthquake Hazard Assessment for Dehradun, Uttarakhand, India, Including a Characteristic Earthquake Recurrence Model for the Himalaya Frontal Fault (HFF). Pure and Applied Geophysics, 2012, 169, 1601-1617.	0.8	32
12	Unbiased Estimation of Moment Magnitude from Body- and Surface-Wave Magnitudes. Bulletin of the Seismological Society of America, 2014, 104, 1802-1811.	1.1	25
13	Seismic Hazard in the Northern India Region. Seismological Research Letters, 2003, 74, 141-147.	0.8	24
14	Uncertainties in the estimation of M max. Journal of Earth System Science, 2008, 117, 671-682.	0.6	24
15	A Seismological Report on the 26 January 2001 Bhuj, India Earthquake. Seismological Research Letters, 2002, 73, 343-355.	0.8	23
16	Probabilistic Seismic Hazard Assessment for Iraq Using Complete Earthquake Catalogue Files. Pure and Applied Geophysics, 2005, 162, 951-966.	0.8	20
17	Temporal and spatial variations in the magnitude of completeness for homogenized moment magnitude catalogue for northeast India. Journal of Earth System Science, 2012, 121, 19-28.	0.6	19
18	Study of effect of seismic displacements on landslide susceptibility zonation (LSZ) in Garhwal Himalayan region of India using GIS and remote sensing techniques. Computers and Geosciences, 2013, 61, 50-63.	2.0	19

Mukat Lal Sharma

#	Article	IF	CITATIONS
19	Potential of SAR intensity tracking technique to estimate displacement rate in a landslide-prone area in Haridwar region, India. Natural Hazards, 2015, 79, 2101-2121.	1.6	19
20	Homogenization of Earthquake Catalog for Northeast India and Adjoining Region. Pure and Applied Geophysics, 2012, 169, 725-731.	0.8	18
21	Recent earthquake swarms in Garhwal Himalaya: A precursor to moderate to great earthquakes in the region. Journal of Asian Earth Sciences, 2011, 42, 1179-1186.	1.0	17
22	Usefulness of synthetic aperture radar (SAR) interferometry for digital elevation model (DEM) generation and estimation of land surface displacement in Jharia coal field area. Geocarto International, 2012, 27, 57-77.	1.7	16
23	Damage Survey Report for Sikkim Earthquake of 18 September 2011. Seismological Research Letters, 2013, 84, 49-56.	0.8	15
24	Earthquake ground motion predictive equations for Garhwal Himalaya, India. Soil Dynamics and Earthquake Engineering, 2014, 66, 135-148.	1.9	15
25	Run-up and Inundation Pattern Developed During the Indian Ocean Tsunami of December 26, 2004 Along the Coast of Tamilnadu (India). Gondwana Research, 2005, 8, 611-616.	3.0	14
26	Attenuation of high-frequency P and S waves in Garhwal Himalaya, India. Tectonophysics, 2014, 636, 216-227.	0.9	14
27	Inclusion of earthquake strong ground motion in a geographic information system-based landslide susceptibility zonation in Garhwal Himalayas. Natural Hazards, 2013, 65, 739-765.	1.6	13
28	Relationship between shear velocity and SPT resistance for sandy soils in the Ganga basin. International Journal of Geotechnical Engineering, 2013, 7, 63-70.	1.1	12
29	Reply to â€~Comment on "Magnitude conversion problem using general orthogonal regression―by H. R. Wason, Ranjit Das and M. L. Sharma' by Paolo Gasperini and Barbara Lolli. Geophysical Journal International, 2014, 196, 628-631.	1.0	8
30	Surface displacement estimation using space-borne SAR interferometry in a small portion along Himalayan Frontal Fault. Optics and Lasers in Engineering, 2014, 53, 164-178.	2.0	8
31	Multi-parameter algorithm for Earthquake Early Warning. Geomatics, Natural Hazards and Risk, 2016, 7, 1242-1264.	2.0	8
32	Strong ground-motion prediction and uncertainties estimation for Delhi, India. Natural Hazards, 2011, 59, 617-637.	1.6	7
33	Surface displacement estimation along Himalayan frontal fault using differential SAR interferometry. Natural Hazards, 2012, 64, 1105-1123.	1.6	7
34	Probabilistic Models For Earthquakes With Large Return Periods In Himalaya Region. Pure and Applied Geophysics, 2017, 174, 4313-4327.	0.8	7
35	Reply to "Comment on â€~Unbiased Estimation of Moment Magnitude from Body―and Surfaceâ€Wave Magnitudes' by R. Das, H. R. Wason, and M. L. Sharma and †Comparative Analysis of Regression Methods Used for Seismic Magnitude Conversions' by P. Gasperini, B. Lolli, and S. Castellaro―by J. Pujol. Bulletin of the Seismological Society of America, 2018, 108, 540-547.	1.1	6
36	Cyclic behavior of seismogenic sources in India and use of ANN for its prediction. Natural Hazards, 2010, 55, 389-404.	1.6	5

#	Article	IF	CITATIONS
37	Tsunami Intensity Mapping Along the Coast of Tamilnadu (India) During the Deadliest Indian Ocean Tsunami of December 26, 2004. Pure and Applied Geophysics, 2006, 163, 1279-1304.	0.8	4
38	Reply to "Comment on 'General Orthogonal Regression Relations between Body-Wave and Moment Magnitudes' by Ranjit Das, H. R. Wason, and M. L. Sharma" by Paolo Gasperini and Barbara Lolli. Seismological Research Letters, 2014, 85, 352-353.	0.8	4