Marcel Maeder

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8439387/marcel-maeder-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

152
papers6,776
citations36
h-index80
g-index155
ext. papers7,110
ext. citations4.4
avg, IF5.67
L-index

#	Paper	IF	Citations
152	Chemical model-based optimization of a sensor array for simultaneous determination of glucose and fructose. <i>Microchemical Journal</i> , 2021 , 172, 106944	4.8	
151	Heterogeneous catalysts for the hydrogenation of amine/alkali hydroxide solvent captured CO2 to formate: A review 2021 , 11, 807-823		3
150	Using chemical modeling for designing of optimal pH sensor based on analytical sensitivity enhancement. <i>Microchemical Journal</i> , 2021 , 168, 106450	4.8	2
149	Generalized indicator-based determination of solution pH. Analytica Chimica Acta, 2020, 1109, 90-97	6.6	4
148	Turning Routine Data into Systems Insight: Multivariate Analysis of Water Quality Dynamics in a Major Drinking Water Reservoir. <i>Environmental Modeling and Assessment</i> , 2020 , 25, 565-579	2	
147	On the avoidance of crossing of singular values in the evolving factor analysis. <i>Journal of Chemometrics</i> , 2020 , 34, e3217	1.6	2
146	A perspective on modeling evolution. <i>Journal of Chemometrics</i> , 2020 , 34, e3205	1.6	1
145	Using chemometrics tools to gain detailed molecular information on chemical processes. <i>Journal of Chemometrics</i> , 2020 , 34, e3207	1.6	
144	Multiset Data Analysis: Extended Multivariate Curve Resolution 2020 , 305-336		5
143	Kinetic Absorption of CO2 into Blended Ammonia (NH3) Solutions with a New Cyclic Amine 4-Aminomethyltetrahydropyran (4-AMTHP). <i>Energy & Energy & E</i>	4.1	3
142	Activity-based analysis of potentiometric pH titrations. <i>Analytica Chimica Acta</i> , 2019 , 1075, 49-56	6.6	1
141	A chemical equilibrium modelling strategy for tuning the apparent equilibrium constants of the chemical systems. <i>Analytica Chimica Acta</i> , 2019 , 1049, 29-37	6.6	7
140	Topics in chemometrics, TIC 2017, a personal report. <i>Journal of Chemometrics</i> , 2018 , 32, e3025	1.6	
139	Handling Different Spatial Resolutions in Image Fusion by Multivariate Curve Resolution-Alternating Least Squares for Incomplete Image Multisets. <i>Analytical Chemistry</i> , 2018 , 90, 6757-6765	7.8	21
138	Kinetics of the reversible reaction of CO2(aq) with taurate in aqueous solution 2018 , 8, 672-685		
137	Handling of highly coeluted chromatographic peaks by multivariate curve resolution for a complex bioanalytical problem: Quantitation of selected corticosteroids and mycophenolic acid in human plasma. <i>Talanta</i> , 2018 , 187, 1-12	6.2	11
136	Quantum chemical computation-based strategy for alternating least squares initialization in multivariate curve resolution analysis of spectral-pH data. <i>Microchemical Journal</i> , 2018 , 140, 183-188	4.8	3

135	PHOSPHATE ESTER HYDROLYSIS PROMOTED BY AN AMIDOPYRIDINE CARBOXYLATE COMPLEX. <i>Rasayan Journal of Chemistry</i> , 2018 , 11, 894-903	1.6	2	
134	Insights into the Chemical Mechanism for CO(aq) and H in Aqueous Diamine Solutions - An Experimental Stopped-Flow Kinetic and H/C NMR Study of Aqueous Solutions of N,N-Dimethylethylenediamine for Postcombustion CO Capture. <i>Environmental Science & Environmental </i>	10.3	17	
133	Development and Evaluation of a Novel Method for Determining Absorbent Composition in Aqueous Ammonia-Based CO2 and SO32[and SO42[Loaded Capture Process Solutions via FT-IR Spectroscopy. <i>Energy & Description Spectroscopy</i> .	4.1	4	
132	The thermodynamic formation constants for iron(III) thiocyanate complexes at zero ionic strength. <i>Inorganica Chimica Acta</i> , 2017 , 466, 249-253	2.7	7	
131	A new matching image preprocessing for image data fusion. <i>Chemometrics and Intelligent Laboratory Systems</i> , 2017 , 164, 32-42	3.8	19	
130	Investigation of metal ion additives on the suppression of ammonia loss and CO2 absorption kinetics of aqueous ammonia-based CO2 capture. <i>International Journal of Greenhouse Gas Control</i> , 2017 , 56, 165-172	4.2	13	
129	The Henry Coefficient of CO2 in the MEA-CO2-H2O System. Energy Procedia, 2017, 114, 1841-1847	2.3	3	
128	Kinetic and Equilibrium Reactions of a New Heterocyclic Aqueous 4-Aminomethyltetrahydropyran (4-AMTHP) Absorbent for Post Combustion Carbon Dioxide (CO2) Capture Processes. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 9200-9206	8.3	6	
127	The determination of the Henry Coefficient of reactive gases IAn example of CO2 in aqueous solutions of monoethanolamine (MEA). <i>Chemical Engineering Science</i> , 2017 , 173, 474-482	4.4	2	
126	Enhanced target factor analysis. <i>Analytica Chimica Acta</i> , 2016 , 911, 35-41	6.6	2	
125	A review of recent methods for the determination of ranges of feasible solutions resulting from soft modelling analyses of multivariate data. <i>Analytica Chimica Acta</i> , 2016 , 911, 1-13	6.6	95	
124	A new approach to the equilibrium study of iron(III) thiocyanates which accounts for the kinetic instability of the complexes particularly observable under high thiocyanate concentrations. <i>Inorganica Chimica Acta</i> , 2016 , 445, 155-159	2.7	16	
123	Model-based analysis of coupled equilibrium-kinetic processes: indirect kinetic studies of thermodynamic parameters using the dynamic data. <i>Analyst, The</i> , 2015 , 140, 3121-35	5	4	
122	Catalysis of CO2 absorption in aqueous solution by vanadate and sulfate and their application to post combustion capture. <i>International Journal of Greenhouse Gas Control</i> , 2015 , 36, 60-65	4.2	7	
121	The effect of piperazine (PZ) on CO2 absorption kinetics into aqueous ammonia solutions at 25.0°C. <i>International Journal of Greenhouse Gas Control</i> , 2015 , 36, 135-143	4.2	19	
120	A study of bovine and human carbonic anhydrases as a model enzyme system for CO2 hydration in post combustion capture. <i>International Journal of Greenhouse Gas Control</i> , 2015 , 37, 85-89	4.2	8	
119	A speciation study of sulfur(iv) in aqueous solution. <i>Dalton Transactions</i> , 2014 , 43, 2147-52	4.3	16	
118	CO2 Absorption into Aqueous Solutions Containing 3-Piperidinemethanol: CO2 Mass Transfer, Stopped-Flow Kinetics, 1H/13C NMR, and Vapor Liquid Equilibrium Investigations. <i>Industrial & Engineering Chemistry Research</i> 2014, 53, 16715-16724	3.9	14	

117	Protonation Constants and Thermodynamic Properties of Amino Acid Salts for CO2 Capture at High Temperatures. <i>Industrial & Description of Constants and Thermodynamic Properties of Amino Acid Salts for CO2 Capture at High Temperatures. Industrial & Description of Constants and Thermodynamic Properties of Amino Acid Salts for CO2 Capture at High Temperatures. <i>Industrial & Description of Constants and Thermodynamic Properties of Amino Acid Salts for CO2 Capture at High Temperatures. Industrial & Description of Constants and Thermodynamic Properties of Amino Acid Salts for CO2 Capture at High Temperatures. <i>Industrial & Description of Constants and Thermodynamic Properties of Amino Acid Salts for CO2 Capture at High Temperatures. Industrial & Description of Constants and Thermodynamic Properties of Amino Acid Salts for CO2 Capture at High Temperatures.</i></i></i>	3.9	11
116	[1.1.1]Cryptand: directions for its use as a variable-pH kinetic molecular device. <i>New Journal of Chemistry</i> , 2014 , 38, 561-567	3.6	4
115	Catalysis of COI bsorption in aqueous solution by inorganic oxoanions and their application to post combustion capture. <i>Environmental Science & Environmental Envir</i>	10.3	23
114	Chemometric Tools for Image Analysis 2014 , 57-110		3
113	Amino acids/NH3 Mixtures for CO2 Capture: Effect of Neutralization Methods on CO2 Mass Transfer and NH3 Vapour Loss. <i>Energy Procedia</i> , 2014 , 63, 773-780	2.3	12
112	Parametric Investigation of Chemical Equilibrium in Mixed Aqueous Amine Systems for CO2 Capture Processes: Impact of Amine Protonation and Reaction Enthalpies on CO2 Absorption Capacity, Cyclic Capacity, and Absorption Enthalpies. <i>Energy Procedia</i> , 2014 , 63, 1818-1826	2.3	3
111	A Novel Process Concept for the Capture of CO2 and SO2 Using a Single Solvent and Column. <i>Energy Procedia</i> , 2014 , 63, 703-714	2.3	12
110	An SO 2 tolerant process for CO 2 capture. <i>International Journal of Greenhouse Gas Control</i> , 2014 , 31, 205-213	4.2	9
109	Chemometrics and data fitting. Journal of Chemometrics, 2013, 27, n/a-n/a	1.6	1
108	Determination and visualization of rotational ambiguity in four-component systems. <i>Analytica Chimica Acta</i> , 2013 , 796, 20-6	6.6	34
107	Multivariate linear regression with missing values. Analytica Chimica Acta, 2013, 796, 38-41	6.6	2
106	The Role of SO2 in the Chemistry of Amine-based CO2 Capture in PCC. Energy Procedia, 2013, 37, 1262-	12.66	8
105	A simple chemical model to represent CO2EmineH2O vapourEquid-equilibria. <i>International Journal of Greenhouse Gas Control</i> , 2013 , 17, 215-224	4.2	35
104	Effect of Sarcosinate on the Absorption Kinetics of CO2 into Aqueous Ammonia Solution. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 6382-6389	3.9	11
103	Toward the understanding of chemical absorption processes for post-combustion capture of carbon dioxide: electronic and steric considerations from the kinetics of reactions of CO2(aq) with sterically hindered amines. <i>Environmental Science & Comp; Technology</i> , 2013 , 47, 1163-9	10.3	67
102	Reactions of CO2 with aqueous piperazine solutions: formation and decomposition of mono- and dicarbamic acids/carbamates of piperazine at 25.0 LC. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 806-13	2.8	47
101	Protonation constants and thermodynamic properties of amines for post combustion capture of CO2. <i>Journal of Chemical Thermodynamics</i> , 2012 , 51, 97-102	2.9	65
100	Toward rational design of amine solutions for PCC applications: the kinetics of the reaction of CO2(aq) with cyclic and secondary amines in aqueous solution. <i>Environmental Science & Environmental Science & Technology</i> 2012, 46, 7422-9	10.3	59

(2009-2012)

99	Kinetics of the reversible reaction of CO2(aq) and HCO3(-) with sarcosine salt in aqueous solution. Journal of Physical Chemistry A, 2012 , 116, 10276-84	2.8	23
98	The reduction of rotational ambiguity in soft-modeling by introducing hard models. <i>Analytica Chimica Acta</i> , 2012 , 709, 32-40	6.6	35
97	Investigations of primary and secondary amine carbamate stability by 1H NMR spectroscopy for post combustion capture of carbon dioxide. <i>Journal of Chemical Thermodynamics</i> , 2012 , 54, 183-191	2.9	62
96	Comprehensive kinetic and thermodynamic study of the reactions of CO2(aq) and HCO3(-) with monoethanolamine (MEA) in aqueous solution. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 14340-9	2.8	81
95	Resolution of rotational ambiguity for three-component systems. <i>Analytical Chemistry</i> , 2011 , 83, 836-47	17.8	81
94	A calorimetric study of carbamate formation. <i>Journal of Chemical Thermodynamics</i> , 2011 , 43, 664-669	2.9	29
93	Kinetics of the reversible reaction of CO2(aq) with ammonia in aqueous solution. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 6405-12	2.8	67
92	Prediction of the overall enthalpy of CO2 absorption in aqueous amine systems from experimentally determined reaction enthalpies. <i>Energy Procedia</i> , 2011 , 4, 1542-1549	2.3	15
91	A systematic investigation of carbamate stability constants by 1H NMR. <i>International Journal of Greenhouse Gas Control</i> , 2011 , 5, 396-400	4.2	41
90	Synthesis, characterization, and crystal structure of a tricadmium complex of 3,4-diamino-5-methyl-1,2,4-triazole. <i>Journal of Coordination Chemistry</i> , 2011 , 64, 105-114	1.6	20
89	Complexation of the N,N?,O-donor ligand N-trans-(2?-hydroxycyclohexyl)-2-aminomethylpyridine. <i>Journal of Coordination Chemistry</i> , 2011 , 64, 3637-3651	1.6	4
88	Conjoint Analysis of Kinetic and Equilibrium Data for Mechanistic Elucidation in Polynuclear Complexation Reactions, Exemplified by Metal(II) Helicate Complex Formation. <i>Australian Journal of Chemistry</i> , 2010 , 63, 141	1.2	
87	Synthesis and metal(II) ion complexation of pyridine-2,6-diamides incorporating amino alcohols. Journal of Coordination Chemistry, 2010 , 63, 2400-2418	1.6	2
86	Comprehensive study of the hydration and dehydration reactions of carbon dioxide in aqueous solution. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 1734-40	2.8	171
85	Complexation of Constrained Ligands Piperazine, N-substituted Piperazines, and Thiomorpholine. <i>Australian Journal of Chemistry</i> , 2009 , 62, 1196	1.2	4
84	Symmetrical diamides based on 2,6-bis(methoxycarbonyl)pyridine: Syntheses and metal ion binding studies. <i>Journal of Heterocyclic Chemistry</i> , 2009 , 46, 243-250	1.9	3
83	Tutorial: the modelling of chemical processes. <i>Analytica Chimica Acta</i> , 2009 , 647, 31-9	6.6	5
82	Molecular interactions between amine and carbonate species in aqueous solution Ikinetics and thermodynamics. <i>Energy Procedia</i> , 2009 , 1, 995-1002	2.3	4

81	Calculation and meaning of feasible band boundaries in multivariate curve resolution of a two-component system. <i>Analytical Chemistry</i> , 2009 , 81, 2115-22	7.8	82
80	Kinetics and mechanism of carbamate formation from CO2(aq), carbonate species, and monoethanolamine in aqueous solution. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 5022-9	2.8	171
79	Carbon dioxide postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines. <i>Environmental Science & Environmental Science & Env</i>	10.3	415
78	Simulation of Enthalpy and Capacity of CO2 Absorption by Aqueous Amine Systems. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 2002-2009	3.9	157
77	Use of local rank-based spatial information for resolution of spectroscopic images. <i>Journal of Chemometrics</i> , 2008 , 22, 291-298	1.6	74
76	Aminoalcohols incorporating a piperazine ring: Synthesis, complexation of a hexadentate ligand and DNA cleavage capability of copper(II) complexes. <i>Inorganica Chimica Acta</i> , 2007 , 360, 2403-2410	2.7	3
75	Cyclic polyamines via a molybdenum(0) templated Mannich-type reaction. <i>Transition Metal Chemistry</i> , 2007 , 32, 287-291	2.1	2
74	Complexation kinetics of copper(II) and nickel(II) with macrocycles: identification of an outer-sphere chelate effect. <i>Inorganic Chemistry</i> , 2007 , 46, 4002-9	5.1	20
73	On rotational ambiguity in model-free analyses of multivariate data. <i>Journal of Chemometrics</i> , 2006 , 20, 302-310	1.6	98
7 2	Model-Based Analysis for Kinetic and Equilibrium Investigations. <i>Critical Reviews in Analytical Chemistry</i> , 2006 , 36, 199-209	5.2	35
71	Advances in the modelling and analysis of complex and industrial processes. <i>Chemometrics and Intelligent Laboratory Systems</i> , 2006 , 82, 75-82	3.8	14
70	Tutorial on the fitting of kinetics models to multivariate spectroscopic measurements with non-linear least-squares regression. <i>Chemometrics and Intelligent Laboratory Systems</i> , 2006 , 81, 149-164	1 ^{3.8}	69
69	Equilibrium modeling of mixtures of methanol and water. <i>Applied Spectroscopy</i> , 2005 , 59, 329-34	3.1	14
68	Abstracting reliable parameters from time-correlated single photon counting experiments. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2005 , 175, 221-225	4.7	2
67	Palladium(II) as a versatile template for the formation of tetraaza macrocycles via Mannich-type reactions. <i>Inorganica Chimica Acta</i> , 2005 , 358, 3227-3235	2.7	7
66	Modeling of batch reactions with in situ spectroscopic measurements and calorimetry. <i>Journal of Chemometrics</i> , 2005 , 19, 329-340	1.6	25
65	Synthesis of a Four-Strand N2O2-Donor Ligand and its Transition Metal Complexation Probed by Electrospray Ionisation Mass Spectrometry. <i>Transition Metal Chemistry</i> , 2004 , 29, 505-510	2.1	2
64	Spectroscopic imaging and chemometrics: a powerful combination for global and local sample analysis. <i>TrAC - Trends in Analytical Chemistry</i> , 2004 , 23, 70-79	14.6	152

(2001-2004)

63	Metal-directed synthesis of a chiral acyclic pentaamine and pendant-arm macrocyclic hexaamine derived from an amino acid. <i>Inorganica Chimica Acta</i> , 2004 , 357, 557-570	2.7	9	
62	Calibration-free estimates of batch process yields and detection of process upsets using in situ spectroscopic measurements and nonisothermal kinetic models: 4-(dimethylamino)pyridinecatalyzed esterification of butanol. <i>Analytical Chemistry</i> , 2004 , 76, 2575-82	7.8	31	
61	Octahedral Complexes of a Mixed N,N,O-Donor Ligand N-trans-(2'-hydroxycyclohexyl)-2-aminomethylpyridine. <i>Australian Journal of Chemistry</i> , 2004 , 57, 483	1.2	7	
60	Comparative stability constants for metal ions with tetraazamacrocycles of various ring sizes carrying a single amine or carboxylate pendant group. <i>Transition Metal Chemistry</i> , 2003 , 28, 460-463	2.1	4	
59	Analyses of three-way data from equilibrium and kinetic investigations. <i>Analytica Chimica Acta</i> , 2003 , 490, 99-108	6.6	22	
58	Analysis of reactions in aqueous solution at non-constant pH: no more buffers?. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 2836	3.6	49	
57	Application of a combination of hard and soft modeling for equilibrium systems to the quantitative analysis of pH-modulated mixture samples. <i>Analytical Chemistry</i> , 2003 , 75, 641-7	7.8	84	
56	Geometrical isomerism in octahedral complexes arising from the presence of a fused ring on a triaza macrocycle. <i>Dalton Transactions</i> , 2003 , 2188	4.3	6	
55	Simulation of Complex Chemical Kinetics. <i>Bioinorganic Reaction Mechanisms</i> , 2003 , 5, 39-46		4	
54	Isomers of 1,4,8,11-Tetraazacyclotetradecane-6,13-dicarboxylate Characterized as Cobalt(III) Complexes. <i>Australian Journal of Chemistry</i> , 2003 , 56, 679	1.2	5	
53	Hard-modelled trilinear decomposition (HTD) for an enhanced kinetic multicomponent analysis. <i>Journal of Chemometrics</i> , 2002 , 16, 218-227	1.6	21	
52	Rank annihilation correction for the amendment of instrumental inconsistencies. <i>Analytica Chimica Acta</i> , 2002 , 464, 249-259	6.6	21	
51	An electrospray ionization mass spectrometry study of the nitroprussidellationlhiolate system. <i>Dalton Transactions RSC</i> , 2002 , 3649-3655		13	
50	Excited state acidity of bifunctional compounds. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 3383-338	893.6	7	
49	Target transform fitting: a new method for the non-linear fitting of multivariate data with separable parameters. <i>Journal of Chemometrics</i> , 2001 , 15, 511-522	1.6	19	
48	Exhaustive evolving factor analysis (E-EFA). Journal of Chemometrics, 2001, 15, 475-484	1.6	24	
47	Application of a novel resolution approach combining soft- and hard-modelling features to investigate temperature-dependent kinetic processes. <i>Analytica Chimica Acta</i> , 2001 , 442, 337-350	6.6	82	
46	Formation kinetics of pendant arm polyamine macrocycles with copper(II). <i>Dalton Transactions RSC</i> , 2001 , 2376-2382		17	

45	Resolving factor analysis. <i>Analytical Chemistry</i> , 2001 , 73, 1587-94	7.8	57
44	Metal-directed synthesis routes to a 16-membered tetraazamacrocycle with two pendant primary amine groups. <i>Inorganica Chimica Acta</i> , 2000 , 306, 1-5	2.7	8
43	■ Eetol a stereo-rigid four-strand motif for alkali and alkaline earth metal ion coordination. <i>Inorganic Chemistry Communication</i> , 2000 , 3, 410-414	3.1	2
42	Combining hard- and soft-modelling to solve kinetic problems. <i>Chemometrics and Intelligent Laboratory Systems</i> , 2000 , 54, 123-141	3.8	259
41	Characterization of the Minor cis Isomer of a Dipendant Polyamino Acid Macrocycle as a Dimeric Nickel(II) Complex. <i>Australian Journal of Chemistry</i> , 2000 , 53, 517	1.2	6
40	New developments for the numerical analysis of spectrophotometric titrations. <i>Polyhedron</i> , 1999 , 18, 3227-3232	2.7	10
39	Hard modelling of spectroscopic measurements. Applications in non-ideal industrial reaction systems. <i>Chemometrics and Intelligent Laboratory Systems</i> , 1999 , 46, 221-230	3.8	31
38	Kinetics of Heavy Metal Ion Adsorption on to, and Proton Release from, Electrolytic Manganese Dioxide. <i>Adsorption Science and Technology</i> , 1998 , 16, 39-50	3.6	4
37	Variation in the Adsorption of Lead(II) by a Range of Electrolytic Manganese Dioxides: Chemometric Examination of Correlation with Physical Properties. <i>Adsorption Science and Technology</i> , 1997 , 15, 583-592	3.6	
36	Outer-sphere complex formation and catalysis of adenosine 5?-triphosphate hydrolysis with polyammonium cations: kinetics employing an attenuated total reflectance infrared method. <i>Inorganica Chimica Acta</i> , 1997 , 254, 353-359	2.7	3
35	Hydrogenolysis of a pendant alcohol dithiadiazamacrocycle. Crystal structure of the 6-amino-6-methyl-1, 11-dithia-4,8-diazacyclotetradecane hydrogenolysis product as a chlorocobalt(III) complex. <i>Inorganica Chimica Acta</i> , 1997 , 261, 197-200	2.7	4
34	Analysis of non-isothermal kinetic measurements. <i>Analytica Chimica Acta</i> , 1997 , 337, 73-81	6.6	42
33	Second order global analysis: the evaluation of series of spectrophotometric titrations for improved determination of equilibrium constants. <i>Analytica Chimica Acta</i> , 1997 , 353, 381-393	6.6	99
32	A Saturated Heterocycle Formed from Ethane-1,2-diamine, Formaldehyde and Nitroethane: Crystal Structure of 6-Methyl-6-nitro-1,4-bis(2?-nitropropan-1?-yl)-1,4-diazacycloheptane. <i>Australian Journal of Chemistry</i> , 1997 , 50, 241	1.2	2
31	Macrocycle Formation Through Carbon Acid - Formaldehyde Condensation Reactions of Bis(propane-1,2-diamine)- and Bis(2-methylpropane-1,2-diamine)-copper(II) Ions. <i>Australian Journal of Chemistry</i> , 1997 , 50, 529	1.2	24
30	"Swollen" Macrocycles: Palladium(II)-Directed Template Syntheses of Pendant-Arm 14-, 16-, and 18-Membered Macrocycles. <i>Inorganic Chemistry</i> , 1996 , 35, 4961-4966	5.1	17
29	Nickel(II) complexes of 15-membered tetraaza macrocycles with a primary amine or carboxylate pendant: structural characterization of a one-dimensional chain compound. <i>Inorganica Chimica Acta</i> , 1996 , 246, 65-71	2.7	8
28	Isolation of and metal ion selection by geometric isomers of a pendant-arm macrotricyclic hexaamine. <i>Polyhedron</i> , 1996 , 15, 3157-3162	2.7	2

27	ATR-IR Spectroscopy for the Investigation of Solution Reaction Kinetics: Hydrolysis of Trimethyl Phosphate. <i>Applied Spectroscopy</i> , 1995 , 49, 1789-1792	3.1	11
26	A spectrophotometric method for the quantification of outer-sphere coordination: A bicyclic ammonium cation with the hexacyanocobaltate(III) anion. <i>Supramolecular Chemistry</i> , 1994 , 3, 261-266	1.8	
25	Second-order globalisation for the determination of activation parameters in kinetics. <i>Analytica Chimica Acta</i> , 1994 , 298, 193-201	6.6	61
24	Outer-sphere coordination of polycyanometallate anions with polyammonium macrocycles: A spectrophotometric study. <i>Inorganica Chimica Acta</i> , 1994 , 227, 71-77	2.7	6
23	Molecular Oxygen, Superoxide, and Peroxide as Ligands in a CoN5 Complex. <i>Inorganic Chemistry</i> , 1994 , 33, 3135-3140	5.1	12
22	METAL-DIRECTED MACROCYCLIZATION REACTIONS INVOLVING FORMALDEHYDE, AMINES AND MONO- OR BI-FUNCTIONAL METHYLENE COMPOUNDS. <i>Reviews in Inorganic Chemistry</i> , 1993 , 13, 199-2	.3 ² 2 ⁴	27
21	Polyamine complexation I Stability constants for metal ion complexation of 5-(4?-amino-2?-azabutane)-5-methyl-3,7-diazanonane-1,9-diamine. <i>Polyhedron</i> , 1991 , 10, 409-413	2.7	7
20	Macromonocycle formation from copper(II)- or nickel(II)-directed condensation of linear tetraamines and formaldehyde with various nitro-carbon acids. <i>Polyhedron</i> , 1990 , 9, 2227-2231	2.7	15
19	Principal components regression in practice. An evaluation of EMD battery activity from X-ray diffraction patterns. <i>TrAC - Trends in Analytical Chemistry</i> , 1990 , 9, 303-308	14.6	1
18	Coordination of the "pendant-arm" macrocycle 6,13-diamino-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane to chromium(III). Crystal structure and physical properties of the hexacoordinated complex ion. <i>Inorganic Chemistry</i> , 1990 , 29, 3208-3213	5.1	17
17	Nonlinear least-squares fitting of multivariate absorption data. <i>Analytical Chemistry</i> , 1990 , 62, 2220-223	24 .8	367
16	Energy-Minimized Structures and Calculated and Experimental Isomer distributions in the hexaamine-cobalt(III) system [Co(L)2]3+ with the chiral facially-coordinating triamine (l = butane-1,2,4-triamine). <i>Helvetica Chimica Acta</i> , 1989 , 72, 1029-1037	2	16
15	Evolving factor analysis, a new multivariate technique in chromatography. <i>Chemometrics and Intelligent Laboratory Systems</i> , 1988 , 3, 205-213	3.8	191
14	Computerized data acquisition and data reduction in spectrophotometric analysis of metal ion complexes. Part 1. General considerations and data acquisition. <i>TrAC - Trends in Analytical Chemistry</i> , 1988 , 7, 111-113	14.6	19
13	Computerized data acquisition and data reduction in spectrophotometric analysis Part 2: numerical analysis with and without an underlying chemical model. <i>TrAC - Trends in Analytical Chemistry</i> , 1988 , 7, 147-150	14.6	10
12	Evolving factor analysis for the resolution of overlapping chromatographic peaks. <i>Analytical Chemistry</i> , 1987 , 59, 527-530	7.8	604
11	Evolving Factor Analysis. Comments on Inorganic Chemistry, 1987, 6, 41-60	3.9	29
10	Quantification of a known component in an unknown mixture. <i>Analytica Chimica Acta</i> , 1987 , 193, 287-2	9 8 .6	92

9	The resolution of overlapping chromatographic peaks by evolving factor analysis. <i>Analytica Chimica Acta</i> , 1986 , 181, 287-291	6.6	207	
8	Calculation of equilibrium constants from multiwavelength spectroscopic data-III Model-free analysis of spectrophotometric and ESR titrations. <i>Talanta</i> , 1985 , 32, 1133-9	6.2	388	
7	Calculation of equilibrium constants from multiwavelength spectroscopic dataII: SPECFIT: two user-friendly programs in basic and standard FORTRAN 77. <i>Talanta</i> , 1985 , 32, 257-64	6.2	369	
6	Calculation of equilibrium constants from multiwavelength spectroscopic data-I Mathematical considerations. <i>Talanta</i> , 1985 , 32, 95-101	6.2	466	
5	Absorption and MCD spectral studies of the decaammine(.mudinitrogen-N,N')diosmium(5+) mixed-valence ion. <i>Journal of the American Chemical Society</i> , 1985 , 107, 2167-2171	16.4	19	
4	Copper(II) complexes with linear pentadentate chelators. <i>Inorganic Chemistry</i> , 1984 , 23, 3724-3730	5.1	29	
3	Spectrophotometric data reduction by eigenvector analysis for equilibrium and kinetic studies and a new method of fitting exponentials. <i>Analytica Chimica Acta</i> , 1980 , 122, 303-313	6.6	19	
2	General non-linear least-squares program for the numerical treatment of spectrophotometric data on a single-precision game computer. <i>Talanta</i> , 1980 , 27, 1037-46	6.2	41	
1	Chemometric Tools for Image Analysis65-109		36	