Esther RosellÃ³-LletÃ-

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8439104/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Empagliflozin reduces the levels of CD36 and cardiotoxic lipids while improving autophagy in the hearts of Zucker diabetic fatty rats. Biochemical Pharmacology, 2019, 170, 113677.	2.0	102
2	Endolysosomal twoâ€pore channels regulate autophagy in cardiomyocytes. Journal of Physiology, 2016, 594, 3061-3077.	1.3	70
3	Differential Gene Expression of Cardiac Ion Channels in Human Dilated Cardiomyopathy. PLoS ONE, 2013, 8, e79792.	1.1	64
4	Nesfatin-1 in Human and Murine Cardiomyocytes: Synthesis, Secretion, and Mobilization of GLUT-4. Endocrinology, 2013, 154, 4757-4767.	1.4	62
5	Endoplasmic Reticulum Stress Induces Different Molecular Structural Alterations in Human Dilated and Ischemic Cardiomyopathy. PLoS ONE, 2014, 9, e107635.	1.1	55
6	A simple validated method for predicting the risk of hospitalization for worsening of heart failure in ambulatory patients: the Redin CORE. European Journal of Heart Failure, 2015, 17, 818-827.	2.9	50
7	Diagnostic and prognostic value of urine NT-proBNP levels in heart failure patients. European Journal of Heart Failure, 2006, 8, 621-627.	2.9	49
8	Adipokines and Inflammation: Focus on Cardiovascular Diseases. International Journal of Molecular Sciences, 2020, 21, 7711.	1.8	48
9	The Adipokine Chemerin Induces Apoptosis in Cardiomyocytes. Cellular Physiology and Biochemistry, 2015, 37, 176-192.	1.1	44
10	Heart Failure Induces Significant Changes in Nuclear Pore Complex of Human Cardiomyocytes. PLoS ONE, 2012, 7, e48957.	1.1	41
11	iTRAQ proteomic analysis of extracellular matrix remodeling in aortic valve disease. Scientific Reports, 2015, 5, 17290.	1.6	36
12	Inflammatory Activation and Left Ventricular Mass in Essential Hypertension. American Journal of Hypertension, 2009, 22, 444-450.	1.0	35
13	RNA-sequencing analysis reveals new alterations in cardiomyocyte cytoskeletal genes in patients with heart failure. Laboratory Investigation, 2014, 94, 645-653.	1.7	35
14	Influence of heart failure on nucleocytoplasmic transport in human cardiomyocytes. Cardiovascular Research, 2010, 85, 464-472.	1.8	33
15	New Altered Non-Fibrillar Collagens in Human Dilated Cardiomyopathy: Role in the Remodeling Process. PLoS ONE, 2016, 11, e0168130.	1.1	32
16	Cardiac protein changes in ischaemic and dilated cardiomyopathy: a proteomic study of human left ventricular tissue. Journal of Cellular and Molecular Medicine, 2012, 16, 2471-2486.	1.6	31
17	Association of the Thrombomodulin Gene c.1418C>T Polymorphism With Thrombomodulin Levels and With Venous Thrombosis Risk. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1435-1440.	1.1	30
18	Variability of NT-proBNP plasma and urine levels in patients with stable heart failure: a 2-year follow-up study. Heart, 2007, 93, 957-962.	1.2	28

#	Article	IF	CITATIONS
19	Differential clinical characteristics and prognosis of intraventricular conduction defects in patients with chronic heart failure. European Journal of Heart Failure, 2013, 15, 877-884.	2.9	27
20	20years of leptin: Role of leptin in cardiomyocyte physiology and physiopathology. Life Sciences, 2015, 140, 10-18.	2.0	27
21	Impact of Cardiovascular Risk Factors and Inflammatory Status on Urinary 8-OHdG in Essential Hypertension. American Journal of Hypertension, 2012, 25, 236-242.	1.0	24
22	Differences in MEF2 and NFAT Transcriptional Pathways According to Human Heart Failure Aetiology. PLoS ONE, 2012, 7, e30915.	1.1	24
23	Relaxin-2 in Cardiometabolic Diseases: Mechanisms of Action and Future Perspectives. Frontiers in Physiology, 2017, 8, 599.	1.3	24
24	Heart failure entails significant changes in human nucleocytoplasmic transport gene expression. International Journal of Cardiology, 2013, 168, 2837-2843.	0.8	23
25	RNA Sequencing Analysis and Atrial Natriuretic Peptide Production in Patients with Dilated and Ischemic Cardiomyopathy. PLoS ONE, 2014, 9, e90157.	1.1	23
26	Urinary B-Type Natriuretic Peptide Levels in the Diagnosis and Prognosis of Heart Failure. Journal of Cardiac Failure, 2007, 13, 549-555.	0.7	22
27	Circulating biomarkers of collagen metabolism in arterial hypertension. Journal of Hypertension, 2013, 31, 1611-1617.	0.3	21
28	SERCA2a: A potential non-invasive biomarker of cardiac allograft rejection. Journal of Heart and Lung Transplantation, 2017, 36, 1322-1328.	0.3	20
29	Gene expression network analysis reveals new transcriptional regulators as novel factors in human ischemic cardiomyopathy. BMC Medical Genomics, 2015, 8, 14.	0.7	19
30	Human Ischemic Cardiomyopathy Shows Cardiac Nos1 Translocation and its Increased Levels are Related to Left Ventricular Performance. Scientific Reports, 2016, 6, 24060.	1.6	18
31	Thyroid hormone biosynthesis machinery is altered in the ischemic myocardium: An epigenomic study. International Journal of Cardiology, 2017, 243, 27-33.	0.8	17
32	Interleukin-4 and Cardiac Fibrosis in Patients With Heart Failure. Revista Espanola De Cardiologia (English Ed), 2007, 60, 777-780.	0.4	16
33	Influence of heart failure on nucleolar organization and protein expression in human hearts. Biochemical and Biophysical Research Communications, 2012, 418, 222-228.	1.0	16
34	Heart Mitochondrial Proteome Study Elucidates Changes in Cardiac Energy Metabolism and Antioxidant PRDX3 in Human Dilated Cardiomyopathy. PLoS ONE, 2014, 9, e112971.	1.1	16
35	Patients with Dilated Cardiomyopathy and Sustained Monomorphic Ventricular Tachycardia Show Up-Regulation of KCNN3 and KCNJ2 Genes and CACNG8-Linked Left Ventricular Dysfunction. PLoS ONE, 2015, 10, e0145518.	1.1	16
36	<i>TRPM7</i> is downâ€regulated in both left atria and left ventricle of ischaemic cardiomyopathy patients and highly related to changes in ventricular function. ESC Heart Failure, 2016, 3, 220-224.	1.4	16

#	Article	IF	CITATIONS
37	ATP synthase subunit alpha and LV mass in ischaemic human hearts. Journal of Cellular and Molecular Medicine, 2015, 19, 442-451.	1.6	15
38	Relaxin activates AMPK-AKT signaling and increases glucose uptake by cultured cardiomyocytes. Endocrine, 2018, 60, 103-111.	1.1	15
39	Myocardium of patients with dilated cardiomyopathy presents altered expression of genes involved in thyroid hormone biosynthesis. PLoS ONE, 2018, 13, e0190987.	1.1	15
40	New Cell Adhesion Molecules in Human Ischemic Cardiomyopathy. PCDHGA3 Implications in Decreased Stroke Volume and Ventricular Dysfunction. PLoS ONE, 2016, 11, e0160168.	1.1	15
41	Role of Sodium-Glucose Co-Transporter 2 Inhibitors in the Regulation of Inflammatory Processes in Animal Models. International Journal of Molecular Sciences, 2022, 23, 5634.	1.8	15
42	A clinical perspective on the utility of alpha 1 antichymotrypsin for the early diagnosis of calcific aortic stenosis. Clinical Proteomics, 2017, 14, 12.	1.1	14
43	The altered expression of autophagy-related genes participates in heart failure: NRBP2 and CALCOCO2 are associated with left ventricular dysfunction parameters in human dilated cardiomyopathy. PLoS ONE, 2019, 14, e0215818.	1.1	14
44	Two-pore channels (TPCs): Novel voltage-gated ion channels with pleiotropic functions. Channels, 2017, 11, 20-33.	1.5	13
45	Intercalated disc in failing hearts from patients with dilated cardiomyopathy: Its role in the depressed left ventricular function. PLoS ONE, 2017, 12, e0185062.	1.1	13
46	<i>ASB1</i> differential methylation in ischaemic cardiomyopathy: relationship with left ventricular performance in endâ€stage heart failure patients. ESC Heart Failure, 2018, 5, 732-737.	1.4	13
47	Plasma CD5L and non-invasive diagnosis of acute heart rejection. Journal of Heart and Lung Transplantation, 2020, 39, 257-266.	0.3	13
48	BH4 Increases nNOS Activity and Preserves Left Ventricular Function in Diabetes. Circulation Research, 2021, 128, 585-601.	2.0	13
49	Impact of glomerular filtration rate on urinary BNP and NT-proBNP levels in heart failure. Peptides, 2012, 33, 354-358.	1.2	12
50	Timing, Etiology, and Location of First Infection in First Year After Heart Transplantation. Transplantation Proceedings, 2010, 42, 3017-3019.	0.3	11
51	Changes in human Golgi apparatus reflect new left ventricular dimensions and function in dilated cardiomyopathy patients. European Journal of Heart Failure, 2017, 19, 280-282.	2.9	11
52	Diagnostic value of serum miR-144-3p for the detection of acute cellular rejection in heart transplant patients. Journal of Heart and Lung Transplantation, 2021, , .	0.3	11
53	Variability of NT-proBNP and Its Relationship with Inflammatory Status in Patients with Stable Essential Hypertension: A 2-Year Follow-Up Study. PLoS ONE, 2012, 7, e31189.	1.1	10
54	Serelaxin (recombinant human relaxin-2) treatment affects the endogenous synthesis of long chain poly-unsaturated fatty acids and induces substantial alterations of lipidome and metabolome profiles in rat cardiac tissue. Pharmacological Research, 2019, 144, 51-65.	3.1	10

#	Article	IF	CITATIONS
55	Obese and Nonobese Patients With Essential Hypertension Show Similar N-terminal proBNP Plasma Levels. American Journal of Hypertension, 2008, 21, 820-825.	1.0	9
56	Circulating Sphingosine-1-Phosphate as A Non-Invasive Biomarker of Heart Transplant Rejection. Scientific Reports, 2019, 9, 13880.	1.6	9
57	Implication of Sphingolipid Metabolism Gene Dysregulation and Cardiac Sphingosine-1-Phosphate Accumulation in Heart Failure. Biomedicines, 2022, 10, 135.	1.4	9
58	Serum markers of apoptosis in the early period of heart transplantation. Biomarkers, 2012, 17, 254-260.	0.9	8
59	Long-Term Prognostic Implications of Metabolic Syndrome in Heart Transplant Recipients. Transplantation Proceedings, 2011, 43, 2257-2259.	0.3	7
60	Expression of B-type natriuretic peptide forms in ischemic human hearts. International Journal of Cardiology, 2012, 158, 199-204.	0.8	7
61	Differential gene expression of C-type natriuretic peptide and its related molecules in dilated and ischemic cardiomyopathy. A new option for the management of heart failure. International Journal of Cardiology, 2014, 174, e84-e86.	0.8	7
62	Metabolic alterations derived from absence of Two-Pore Channel 1 at cardiac level. Journal of Biosciences, 2016, 41, 643-658.	0.5	7
63	24Âh nesfatin-1 treatment promotes apoptosis in cardiomyocytes. Endocrine, 2016, 51, 551-555.	1.1	7
64	Circulating mitochondrial genes detect acute cardiac allograft rejection: Role of the mitochondrial calcium uniporter complex. American Journal of Transplantation, 2021, 21, 2056-2066.	2.6	7
65	Inflammation and Apoptosis in Hypertension. Relevance of the Extent of Target Organ Damage. Revista Espanola De Cardiologia (English Ed), 2012, 65, 819-825.	0.4	6
66	Relaxin has beneficial effects on liver lipidome and metabolic enzymes. FASEB Journal, 2021, 35, e21737.	0.2	6
67	Relaxin-2 as a Potential Biomarker in Cardiovascular Diseases. Journal of Personalized Medicine, 2022, 12, 1021.	1.1	6
68	Protein Inhibitor of NOS1 Plays a Central Role in the Regulation of NOS1 Activity in Human Dilated Hearts. Scientific Reports, 2016, 6, 30902.	1.6	5
69	Relationships of Telomere Homeostasis with Oxidative Stress and Cardiac Dysfunction in Human Ischaemic Hearts. Antioxidants, 2021, 10, 1750.	2.2	5
70	The Role of the Nuclear Lamins in the Pathogenesis of Heart Failure in Patients Undergoing Cardiac Transplantation. Transplantation Proceedings, 2009, 41, 2227-2230.	0.3	4
71	MMP-2 and sTNF-R1 Variability in Patients with Essential Hypertension: 1-Year Follow-Up Study. ISRN Cardiology, 2012, 2012, 1-7.	1.6	4
72	Urinary NT-proBNP: A Valuable Marker in the Assessment of Patients With Essential Hypertension. Revista Espanola De Cardiologia (English Ed), 2009, 62, 1322-1325.	0.4	3

#	Article	IF	CITATIONS
73	XPO1 Gene Therapy Attenuates Cardiac Dysfunction in Rats with Chronic Induced Myocardial Infarction. Journal of Cardiovascular Translational Research, 2020, 13, 593-600.	1.1	3
74	Protocol for Isolation of Golgi Vesicles from Human and Animal Hearts by Flotation through a Discontinuous Sucrose Gradient. STAR Protocols, 2020, 1, 100100.	0.5	3
75	Plasma Levels of SERCA2a as a Noninvasive Biomarker of Primary Graft Dysfunction After Heart Transplantation. Transplantation, 2021, Publish Ahead of Print, .	0.5	3
76	Value of SERCA2a as a Biomarker for the Identification of Patients with Heart Failure Requiring Circulatory Support. Journal of Personalized Medicine, 2021, 11, 1122.	1.1	3
77	The Treatment With the SGLT2 Inhibitor Empagliflozin Modifies the Hepatic Metabolome of Male Zucker Diabetic Fatty Rats Towards a Protective Profile. Frontiers in Pharmacology, 2022, 13, 827033.	1.6	3
78	Urinary NT-proBNP Level: Relationship With Ventricular Function Parameters in Heart Failure. Revista Espanola De Cardiologia (English Ed), 2007, 60, 510-516.	0.4	2
79	Electron Microscopy Reveals Evidence of Perinuclear Clustering of Mitochondria in Cardiac Biopsy-Proven Allograft Rejection. Journal of Personalized Medicine, 2022, 12, 296.	1.1	2
80	Mycophenolate Acid vs Mycophenolate Mofetil Therapy. Transplantation Proceedings, 2010, 42, 3041-3043.	0.3	1
81	Alterations in the Nucleocytoplasmic Transport in Heart Transplant Rejection. Transplantation Proceedings, 2021, 53, 2718-2720.	0.3	1
82	DNMT3B System Dysregulation Contributes to the Hypomethylated State in Ischaemic Human Hearts. Biomedicines, 2022, 10, 866.	1.4	1
83	Molecular Alterations of Nucleocytoplasmic Transport in Patients on the Heart Transplantation Waiting List and Its Correlation With the Severity and Etiology of Heart Failure. Transplantation Proceedings, 2019, 51, 369-371.	0.3	0
84	119 Lamina-associated polypeptide 2, lamin A and p62 expression in ischemic and dilated cardiomyopathy. European Journal of Heart Failure, Supplement, 2007, 6, 29-29.	0.2	0
85	Cardiac Allograft Rejection Induces Changes in Nucleocytoplasmic Transport: RANGAP1 as a Potential Non-Invasive Biomarker. Journal of Personalized Medicine, 2022, 12, 913.	1.1	0