
Changren Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8438931/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chitooligosaccharide-europium (III) functional micron complex with visualized inflammation monitoring, immunomodulation and pro-vascularization activities for effective wound healing of pressure ulcers injury. Applied Materials Today, 2022, 26, 101310.	2.3	4
2	<i>In vivo</i> and <i>in vitro</i> evaluation of chitosan-modified bioactive glass paste for wound healing. Journal of Materials Chemistry B, 2022, 10, 598-606.	2.9	4
3	Bio-inspired liquid crystal gel with adjustable viscoelasticity to modulate cell behaviors and fate. Composites Part B: Engineering, 2022, 234, 109704.	5.9	11
4	Anisotropic and robust hydrogels combined osteogenic and angiogenic activity as artificial periosteum. Composites Part B: Engineering, 2022, 233, 109627.	5.9	13
5	Novel Digital Light Processing Printing Strategy Using a Collagen-Based Bioink with Prospective Cross-Linker Procyanidins. Biomacromolecules, 2022, 23, 240-252.	2.6	19
6	Dual-Cross-linked Liquid Crystal Hydrogels with Controllable Viscoelasticity for Regulating Cell Behaviors. ACS Applied Materials & Interfaces, 2022, 14, 21966-21977.	4.0	9
7	Synthesis and characterization of multifunctional organic-inorganic composite hydrogel formed with tissue-adhesive property and inhibiting infection. Materials Science and Engineering C, 2021, 118, 111532.	3.8	15
8	Iron coupling with carbon fiber to stimulate biofilms formation in aerobic biological film systems for improved decentralized wastewater treatment: Performance, mechanisms and implications. Bioresource Technology, 2021, 319, 124151.	4.8	27
9	A thermostability perspective on enhancing physicochemical and cytological characteristics of octacalcium phosphate by doping iron and strontium. Bioactive Materials, 2021, 6, 1267-1282.	8.6	21
10	Facile Synthesis of <i>In Situ</i> Formable Alginate Composite Hydrogels with Ca ²⁺ -Induced Healing Ability. Tissue Engineering - Part A, 2021, 27, 1225-1238.	1.6	8
11	Impacts of chitosan oligosaccharide (COS) on angiogenic activities. Microvascular Research, 2021, 134, 104114.	1.1	14
12	A novel thermoresponsive membrane as potential material for tissue engineering. Liquid Crystals, 2021, 48, 653-664.	0.9	1
13	Facile Method to Create Poly(<scp>d</scp> , <scp>l</scp> -lactide) Composite Membranes with Sequential Chitin Whisker Layers for Tunable Strength and Cell Adhesion. ACS Sustainable Chemistry and Engineering, 2021, 9, 4440-4452.	3.2	7
14	CD47-mediated DTIC-loaded chitosan oligosaccharide-grafted nGO for synergistic chemo-photothermal therapy against malignant melanoma. Materials Science and Engineering C, 2021, 123, 112014.	3.8	26
15	Surface Modification of Reduced Graphene Oxide Beads: Integrating Efficient Endotoxin Adsorption and Improved Blood Compatibility. ACS Applied Bio Materials, 2021, 4, 4896-4906.	2.3	6
16	Gradient regulation of osteo-immune microenvironment by chitooligosaccharide-containing ion-doped mesoporous silica nanoparticles to accelerate osteogenesis. Applied Materials Today, 2021, 23, 101067.	2.3	11
17	Hemostatic performance of chitosan-based hydrogel and its study on biodistribution and biodegradability in rats. Carbohydrate Polymers, 2021, 264, 117965.	5.1	48
18	Facile Polyphenol–Europium Assembly Enabled Functional Poly(<scp>l</scp> ‣actic Acid) Nanofiber Mats with Enhanced Antioxidation and Angiogenesis for Accelerated Wound Healing. Advanced Healthcare Materials, 2021, 10, e2100793.	3.9	35

#	Article	IF	CITATIONS
19	Construction of biomimetic artificial intervertebral disc scaffold via 3D printing and electrospinning. Materials Science and Engineering C, 2021, 128, 112310.	3.8	38
20	Mechanical and nonisothermal cold crystallization behaviors of injection molded surfaceâ€modified chitin whiskers/poly(<scp>l</scp> â€lactide) composites. Polymer Composites, 2021, 42, 6635-6647.	2.3	4
21	Fabrication of regular macro-mesoporous reduced graphene aerogel beads with ultra-high mechanical property for efficient bilirubin adsorption. Materials Science and Engineering C, 2020, 106, 110282.	3.8	24
22	Synthesis and cytotoxicity of novel elastomers based on cholesteric liquid crystals. Liquid Crystals, 2020, 47, 449-464.	0.9	16
23	Fabrication of chitosan/graphene oxide composite aerogel microspheres with high bilirubin removal performance. Materials Science and Engineering C, 2020, 106, 110162.	3.8	54
24	Sulfonated chitosan and phosphorylated chitosan coated polylactide membrane by polydopamine-assisting for the growth and osteogenic differentiation of MC3T3-E1s. Carbohydrate Polymers, 2020, 229, 115517.	5.1	31
25	Self-assembled structures of halloysite nanotubes: towards the development of high-performance biomedical materials. Journal of Materials Chemistry B, 2020, 8, 838-851.	2.9	50
26	Synthesis of chitin/graphene oxide composite aerogel beads for lipase immobilization. Journal of Porous Materials, 2020, 27, 549-554.	1.3	7
27	Stress-relaxing double-network hydrogel for chondrogenic differentiation of stem cells. Materials Science and Engineering C, 2020, 107, 110333.	3.8	43
28	Creating Ultrastrong and Osteogenic Chitin Nanocomposite Hydrogels via Chitin Whiskers with Different Surface Chemistries. ACS Sustainable Chemistry and Engineering, 2020, 8, 17487-17499.	3.2	11
29	Fabrication and evaluation of a chitin whisker/poly(<scp>l</scp> -lactide) composite scaffold by the direct trisolvent-ink writing method for bone tissue engineering. Nanoscale, 2020, 12, 18225-18239.	2.8	29
30	Laminin-modified gellan gum hydrogels loaded with the nerve growth factor to enhance the proliferation and differentiation of neuronal stem cells. RSC Advances, 2020, 10, 17114-17122.	1.7	15
31	Sulfated chitosan coated polylactide membrane enhanced osteogenic and vascularization differentiation in MC3T3-E1s and HUVECs co-cultures system. Carbohydrate Polymers, 2020, 245, 116522.	5.1	8
32	Different influence of sulfated chitosan with different sulfonic acid group sites on HUVECs behaviors. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1237-1253.	1.9	6
33	Injectable and <i>In Situ</i> -Formable Thiolated Chitosan-Coated Liposomal Hydrogels as Curcumin Carriers for Prevention of <i>In Vivo</i> Breast Cancer Recurrence. ACS Applied Materials & Interfaces, 2020, 12, 17936-17948.	4.0	76
34	Construction and Biocompatibility of Three-Dimensional Composite Polyurethane Scaffolds in Liquid Crystal State. ACS Biomaterials Science and Engineering, 2020, 6, 2312-2322.	2.6	11
35	Formulation of α-Tricalcium Phosphate Bone Cement Based on an Alginate–Chitosan Gel System. Crystal Growth and Design, 2020, 20, 1400-1404.	1.4	8
36	Macrophage Polarization Mediated by Chitooligosaccharide (COS) and Associated Osteogenic and Angiogenic Activities. ACS Biomaterials Science and Engineering, 2020, 6, 1614-1629.	2.6	31

#	Article	IF	CITATIONS
37	Liquid crystalline and rheological properties of chitin whiskers with different chemical structures and chargeability. International Journal of Biological Macromolecules, 2020, 157, 24-35.	3.6	22
38	The design, fabrication and evaluation of 3D printed gHNTs/gMgO whiskers/PLLA composite scaffold with honeycomb microstructure for bone tissue engineering. Composites Part B: Engineering, 2020, 192, 108001.	5.9	55
39	Tannic acid/Call anchored on the surface of chitin nanofiber sponge by layer-by-layer deposition: Integrating effective antibacterial and hemostatic performance. International Journal of Biological Macromolecules, 2020, 159, 304-315.	3.6	35
40	Synergistic effect of functionalized poly(-lactide) with surface-modified MgO and chitin whiskers on osteogenesis in vivo and in vitro. Materials Science and Engineering C, 2019, 103, 109851.	3.8	8
41	Enzymatic Degradation of Nanosized Chitin Whiskers with Different Degrees of Deacetylation. ACS Biomaterials Science and Engineering, 2019, 5, 5316-5326.	2.6	16
42	Antibacterial poly (ethylene glycol) diacrylate/chitosan hydrogels enhance mechanical adhesiveness and promote skin regeneration. Carbohydrate Polymers, 2019, 225, 115110.	5.1	121
43	Clay Materials: Clay Nanotubes Aligned with Shear Forces for Mesenchymal Stem Cell Patterning (Small 21/2019). Small, 2019, 15, 1970110.	5.2	3
44	Synergistic Effect of Surface-Modified MgO and Chitin Whiskers on the Hydrolytic Degradation Behavior of Injection Molding Poly(<scp>l</scp> -lactic acid). ACS Biomaterials Science and Engineering, 2019, 5, 2942-2952.	2.6	4
45	Fabrication and Evaluation of 3D Printed Poly(<scp>l</scp> -lactide) Scaffold Functionalized with Quercetin-Polydopamine for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2019, 5, 2506-2518.	2.6	44
46	Synthesis and Characterization of a Silica-Based Drug Delivery System for Spinal Cord Injury Therapy. Nano-Micro Letters, 2019, 11, 23.	14.4	24
47	Clay Nanotubes Aligned with Shear Forces for Mesenchymal Stem Cell Patterning. Small, 2019, 15, e1900357.	5.2	30
48	Alkaline phosphatase enzyme-induced biomineralization of chitosan scaffolds with enhanced osteogenesis for bone tissue engineering. Chemical Engineering Journal, 2019, 371, 618-630.	6.6	62
49	Hydrophobically modified chitin/halloysite nanotubes composite sponges for high efficiency oil-water separation. International Journal of Biological Macromolecules, 2019, 132, 406-415.	3.6	60
50	Biomimetic mineralisation of eggshell membrane featuring natural nanofiber network structure for improving its osteogenic activity. Colloids and Surfaces B: Biointerfaces, 2019, 179, 299-308.	2.5	33
51	Well-ordered chitin whiskers layer with high stability on the surface of poly(d,l-lactide) film for enhancing mechanical and osteogenic properties. Carbohydrate Polymers, 2019, 212, 277-288.	5.1	20
52	Functional polyhedral oligomeric silsesquioxane reinforced poly(lactic acid) nanocomposites for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 604-614.	1.5	35
53	The liquid crystalline order, rheology and their correlation in chitin whiskers suspensions. Carbohydrate Polymers, 2019, 209, 92-100.	5.1	18
54	Construction of blood compatible chitin/graphene oxide composite aerogel beads for the adsorption of bilirubin. Carbohydrate Polymers, 2019, 207, 704-712.	5.1	60

#	Article	IF	CITATIONS
55	Preparation and characterization of in-situ formable liposome/chitosan composite hydrogels. Materials Letters, 2018, 220, 289-292.	1.3	23
56	Fabrication of macroporous reduced graphene oxide composite aerogels reinforced with chitosan for high bilirubin adsorption. RSC Advances, 2018, 8, 8338-8348.	1.7	44
57	Folate-Conjugated Halloysite Nanotubes, an Efficient Drug Carrier, Deliver Doxorubicin for Targeted Therapy of Breast Cancer. ACS Applied Nano Materials, 2018, 1, 595-608.	2.4	97
58	Simple fabrication of rough halloysite nanotubes coatings by thermal spraying for high performance tumor cells capture. Materials Science and Engineering C, 2018, 85, 170-181.	3.8	22
59	Effect of MgO whiskers on thermal behavior and mechanical properties of injection molded poly(<i>L</i> ″actide). Polymer Composites, 2018, 39, E1807.	2.3	2
60	Immobilization of bovine serum albumin via mussel-inspired polydopamine coating on electrospun polyethersulfone (PES) fiber mat for effective bilirubin adsorption. Applied Surface Science, 2018, 451, 45-55.	3.1	38
61	Dual drug loaded coaxial electrospun PLGA/PVP fiber for guided tissue regeneration under control of infection. Materials Science and Engineering C, 2018, 90, 549-556.	3.8	77
62	Effects of strontium doping on the degradation and Sr ion release behaviors of αâ€ŧricalcium phosphate bone cement. Journal of the American Ceramic Society, 2018, 101, 502-508.	1.9	15
63	<i>In vitro</i> evaluation of electrospun PLGA/PLLA/PDLLA blend fibers loaded with naringin for guided bone regeneration. Dental Materials Journal, 2018, 37, 317-324.	0.8	14
64	Construction and characterization of an antibacterial/anticoagulant dual-functional surface based on poly l-lactic acid electrospun fibrous mats. Materials Science and Engineering C, 2018, 92, 726-736.	3.8	16
65	Preparation of Icariin and Deferoxamine Functionalized Poly(<scp>I</scp> -lactide)/chitosan Micro/Nanofibrous Membranes with Synergistic Enhanced Osteogenesis and Angiogenesis. ACS Applied Bio Materials, 2018, 1, 389-402.	2.3	16
66	Fabrication of chitin/graphene oxide composite sponges with higher bilirubin adsorption capacity. Journal of Materials Science: Materials in Medicine, 2018, 29, 108.	1.7	22
67	Fabrication, antibacterial activity and cytocompatibility of quaternary ammonium chitooligosaccharide functionalized polyurethane membrane via polydopamine adhesive layer. Materials Science and Engineering C, 2018, 93, 319-331.	3.8	9
68	Tissue Engineering Scaffolds Derived from Chitosan. Current Organic Chemistry, 2018, 22, 708-719.	0.9	5
69	Effect of halloysite nanotubes on the structure and function of important multiple blood components. Materials Science and Engineering C, 2017, 75, 72-78.	3.8	23
70	Synthesis of in-situ formable hydrogels with collagen and hyaluronan through facile Michael addition. Materials Science and Engineering C, 2017, 77, 1035-1043.	3.8	32
71	Cellulose–halloysite nanotube composite hydrogels for curcumin delivery. Cellulose, 2017, 24, 2861-2875.	2.4	72
72	In vitro degradation and cytocompatibility of g-MgO whiskers/PLLA composites. Journal of Materials Science, 2017, 52, 2329-2344.	1.7	25

#	Article	IF	CITATIONS
73	Icariin immobilized electrospinning poly(I-lactide) fibrous membranes via polydopamine adhesive coating with enhanced cytocompatibility and osteogenic activity. Materials Science and Engineering C, 2017, 79, 399-409.	3.8	49
74	Liposomes coated with thiolated chitosan as drug carriers of curcumin. Materials Science and Engineering C, 2017, 80, 156-164.	3.8	116
75	Self-Assembling Halloysite Nanotubes into Concentric Ring Patterns in a Sphere-on-Flat Geometry. Langmuir, 2017, 33, 3088-3098.	1.6	38
76	Influence of the structure of poly (L-lactic acid) electrospun fibers on the bioactivity of endothelial cells: proliferation and inflammatory cytokines expression. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 323-335.	1.9	5
77	Biocompatible β-SrHPO4 clusters with dandelion-like structure as an alternative drug carrier. Materials Science and Engineering C, 2017, 81, 8-12.	3.8	13
78	Polyethyleneimine grafted short halloysite nanotubes for gene delivery. Materials Science and Engineering C, 2017, 81, 224-235.	3.8	70
79	Mechanical properties and osteogenic activity of poly(l-lactide) fibrous membrane synergistically enhanced by chitosan nanofibers and polydopamine layer. Materials Science and Engineering C, 2017, 81, 280-290.	3.8	36
80	Chitosan composite hydrogels reinforced with natural clay nanotubes. Carbohydrate Polymers, 2017, 175, 689-698.	5.1	100
81	Effects of halloysite nanotubes on physical properties and cytocompatibility of alginate composite hydrogels. Materials Science and Engineering C, 2017, 70, 303-310.	3.8	97
82	Deferoxamine immobilized poly(D,L-lactide) membrane via polydopamine adhesive coating: The influence on mouse embryo osteoblast precursor cells and human umbilical vein endothelial cells. Materials Science and Engineering C, 2017, 70, 701-709.	3.8	18
83	Antibacterial activity and cytocompatibility of chitooligosaccharide-modified polyurethane membrane via polydopamine adhesive layer. Carbohydrate Polymers, 2017, 156, 235-243.	5.1	61
84	Effect of dacarbazine on CD44 in live melanoma cells as measured by atomic force microscopy-based nanoscopy. International Journal of Nanomedicine, 2017, Volume 12, 8867-8886.	3.3	6
85	Poly(L-lactide) crystallization topography directs MC3T3-E1 cells response. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 1317-1330.	1.9	4
86	Polysaccharide-halloysite nanotube composites for biomedical applications: a review. Clay Minerals, 2016, 51, 457-467.	0.2	30
87	Effects of crystallization temperature and spherulite size on cracking behavior of semi-crystalline polymers. Polymer Bulletin, 2016, 73, 2961-2972.	1.7	9
88	Electrospun composite nanofiber membrane of poly(l -lactide) and surface grafted chitin whiskers: Fabrication, mechanical properties and cytocompatibility. Carbohydrate Polymers, 2016, 147, 216-225.	5.1	55
89	Bio-inspired cell membrane ingredient cholesterol-conjugated chitosan as a potential material for bone tissue repair. Chemical Research in Chinese Universities, 2016, 32, 406-413.	1.3	1
90	Chitosan-chitin nanocrystal composite scaffolds for tissue engineering. Carbohydrate Polymers, 2016, 152, 832-840.	5.1	99

#	Article	IF	CITATIONS
91	Improving cytoactive of endothelial cell by introducing fibronectin to the surface of poly L-Lactic acid fiber mats via dopamine. Materials Science and Engineering C, 2016, 69, 373-379.	3.8	23
92	Enhanced Therapeutic Efficacy of Doxorubicin for Breast Cancer Using Chitosan Oligosaccharide-Modified Halloysite Nanotubes. ACS Applied Materials & Interfaces, 2016, 8, 26578-26590.	4.0	143
93	A facile method to prepare polysaccharide-based in-situ formable hydrogels with antibacterial ability. Materials Letters, 2016, 183, 81-84.	1.3	24
94	Detection of CD28/CD86 coâ€stimulatory molecules and surface properties of T and dendritic cells: An AFM study. Scanning, 2016, 38, 365-375.	0.7	7
95	Crosslinked carboxylated SBR composites reinforced with chitin nanocrystals. Journal of Polymer Research, 2016, 23, 1.	1.2	17
96	Vascularization of plastic calcium phosphate cement in vivo induced by in-situ-generated hollow channels. Materials Science and Engineering C, 2016, 68, 153-162.	3.8	21
97	Rapid biomimetic mineralization of collagen fibrils and combining with human umbilical cord mesenchymal stem cells for bone defects healing. Materials Science and Engineering C, 2016, 68, 43-51.	3.8	32
98	Nanocomposites of poly(l -lactide) and surface-modified chitin whiskers with improved mechanical properties and cytocompatibility. European Polymer Journal, 2016, 81, 266-283.	2.6	35
99	Stripe-like Clay Nanotubes Patterns in Glass Capillary Tubes for Capture of Tumor Cells. ACS Applied Materials & Interfaces, 2016, 8, 7709-7719.	4.0	68
100	Collagen films with stabilized liquid crystalline phases and concerns on osteoblast behaviors. Materials Science and Engineering C, 2016, 58, 977-985.	3.8	17
101	In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Materials Science and Engineering C, 2015, 49, 700-712.	3.8	143
102	Poly(<scp>l</scp> -lactide)/halloysite nanotube electrospun mats as dual-drug delivery systems and their therapeutic efficacy in infected full-thickness burns. Journal of Biomaterials Applications, 2015, 30, 512-525.	1.2	39
103	Tough and highly stretchable polyacrylamide nanocomposite hydrogels with chitin nanocrystals. International Journal of Biological Macromolecules, 2015, 78, 23-31.	3.6	58
104	Surface modification of halloysite nanotubes with <scp>l</scp> â€lactic acid: An effective route to highâ€performance poly(<scp>l</scp> â€lactide) composites. Journal of Applied Polymer Science, 2015, 132, .	1.3	14
105	The influence of aminophylline on the nanostructure and nanomechanics of T lymphocytes: an AFM study. Nanoscale Research Letters, 2014, 9, 518.	3.1	11
106	Synthesis of chitosanâ€ <i>graft</i> â€î²â€€yclodextrin for improving the loading and release of doxorubicin in the nanopaticles. Journal of Applied Polymer Science, 2014, 131, .	1.3	53
107	Subcellular localization of chitosan oligosaccharides in living cells. Science Bulletin, 2014, 59, 2449-2454.	1.7	5
108	The improvement of hemostatic and wound healing property of chitosan by halloysite nanotubes. RSC Advances, 2014, 4, 23540-23553.	1.7	130

#	Article	IF	CITATIONS
109	Preparation and characterization of nanohydroxyapatite strengthening nanofibrous poly(<scp>L</scp> ″actide) scaffold for bone tissue engineering. Journal of Applied Polymer Science, 2013, 128, 1332-1338.	1.3	5
110	A Comparative Study of Fibroblast Behaviors under Cyclic Stress Stimulus and Static Culture on 3D Patterned Matrix. Journal of Bionic Engineering, 2013, 10, 148-155.	2.7	3
111	Chitin-natural clay nanotubes hybrid hydrogel. International Journal of Biological Macromolecules, 2013, 58, 23-30.	3.6	62
112	Preparation and properties of biomimetic porous nanofibrous poly(l-lactide) scaffold with chitosan nanofiber network by a dual thermally induced phase separation technique. Materials Science and Engineering C, 2012, 32, 1496-1502.	3.8	55
113	Preparation, characterization and cytocompatibility of polyurethane/cellulose based liquid crystal composite membranes. Carbohydrate Polymers, 2012, 90, 1353-1361.	5.1	27
114	A biomimetic strategy for controllable degradation of chitosan scaffolds. Journal of Materials Research, 2012, 27, 1859-1868.	1.2	15
115	Rapid synthesis and characterization of chitosanâ€ <i>g</i> â€poly(<scp>D,L</scp> â€lactide) copolymers with hydroxyethyl chitosan as a macroinitiator under microwave irradiation. Journal of Applied Polymer Science, 2012, 125, E125.	1.3	21
116	Protein adsorption and cytocompatibility of poly(<scp>L</scp> â€lactic acid) surfaces modified with biomacromolecules. Journal of Applied Polymer Science, 2012, 125, E501.	1.3	15
117	In vitro and in vivo characterization of homogeneous chitosan-based composite scaffolds. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 100-106.	0.4	1
118	Effects of five chitosan oligosaccharides on nuclear factor-kappa B signaling pathway. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 276-279.	0.4	12
119	Novel polymer nanocomposite hydrogel with natural clay nanotubes. Colloid and Polymer Science, 2012, 290, 895-905.	1.0	93
120	Notice of Retraction: Fabrication of Injectable PLLA/Alginate Hydrogel for Tissue Engineering. , 2011, , .		3
121	Effect of chitooligosaccharides on cyclin D1, bcl-xl and bcl-2 mRNA expression in A549 cells using quantitative PCR. Science Bulletin, 2011, 56, 1629-1632.	1.7	20
122	Rapidly in situ forming biodegradable hydrogels by combining alginate and hydroxyapatite nanocrystal. Science China Technological Sciences, 2010, 53, 272-277.	2.0	8
123	Preparation of regular micropitted polylactide films via phase separation and their cell affinity evaluation. Journal of Applied Polymer Science, 2010, 116, 3162-3170.	1.3	2
124	Purification of Alginate for Tissue Engineering. , 2009, , .		2
125	Properties of the Fast Setting Calcium Phosphate Cement Scaffold. , 2009, , .		0
126	Protein adsorption behaviors on chitosan/poly(É›-caprolactone) blend films studied by quartz crystal microbalance with dissipation monitoring (QCM-D). Science in China Series D: Earth Sciences, 2009, 52, 2275-2279.	0.9	6

#	Article	IF	CITATIONS
127	Protein adsorption on the poly(L-lactic acid) surface modified by chitosan and its derivatives. Science Bulletin, 2009, 54, 3167-3173.	1.7	5
128	Basic Properties of Calcium Phosphate Cement Containing Chitosan in its Liquid Phase. , 2009, , .		0
129	Processing of nanocrystalline hydroxyapatite particles via reverse microemulsions. Journal of Materials Science, 2008, 43, 384-389.	1.7	36
130	Surface modification of poly(L-lactic acid) by entrapment of chitosan and its derivatives to promote osteoblasts-like compatibility. Journal of Biomedical Materials Research - Part A, 2007, 83A, 1110-1116.	2.1	23
131	Formation of bone-like apatite on poly(L-lactide) to improve osteoblast-like compatibility in vitro and in vivo. Frontiers of Materials Science in China, 2007, 1, 140-146.	0.5	4
132	Preparation of biodegradable crosslinking agents and application in PVP hydrogel. Journal of Applied Polymer Science, 2006, 101, 1515-1521.	1.3	24
133	Preparation and degradation of PLA/chitosan composite materials. Journal of Applied Polymer Science, 2004, 91, 274-277.	1.3	111
134	A new copolymerization equation. Journal of Applied Polymer Science, 1995, 55, 641-643.	1.3	0
135	Liquid Crystal Modified Polylactic Acid Improves Cytocompatibility and M2 Polarization of Macrophages to Promote Osteogenesis. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	1