
Jaroslav VlÄek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8438922/publications.pdf Version: 2024-02-01

ΙΔΡΟΘΙΔΥΛΙΆΕΚ

#	Article	IF	CITATIONS
1	Reactive magnetron sputtering of thin films: present status and trends. Thin Solid Films, 2005, 475, 208-218.	0.8	329
2	Collisional-radiative model for an argon glow discharge. Journal of Applied Physics, 1998, 84, 121-136.	1.1	223
3	A collisional-radiative model applicable to argon discharges over a wide range of conditions. I. Formulation and basic data. Journal Physics D: Applied Physics, 1989, 22, 623-631.	1.3	215
4	Magnetron sputtering of hard nanocomposite coatings and their properties. Surface and Coatings Technology, 2001, 142-144, 557-566.	2.2	205
5	Microstructure and properties of nanocomposite Ti–B–N and Ti–B–C coatings. Surface and Coatings Technology, 1999, 120-121, 405-411.	2.2	170
6	Mechanical and optical properties of hard SiCN coatings prepared by PECVD. Thin Solid Films, 2004, 447-448, 201-207.	0.8	145
7	Magnetron sputtering of films with controlled texture and grain size. Materials Chemistry and Physics, 1998, 54, 116-122.	2.0	111
8	Pulsed dc Magnetron Discharges and their Utilization in Plasma Surface Engineering. Contributions To Plasma Physics, 2004, 44, 426-436.	0.5	110
9	Reactive magnetron sputtering of hard Si–B–C–N films with a high-temperature oxidation resistance. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 1513-1522.	0.9	76
10	Electron energy distributions and plasma parameters in high-power pulsed magnetron sputtering discharges. Plasma Sources Science and Technology, 2009, 18, 025008.	1.3	76
11	High-power pulsed sputtering using a magnetron with enhanced plasma confinement. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 42-47.	0.9	75
12	Process stabilization and a significant enhancement of the deposition rate in reactive high-power impulse magnetron sputtering of ZrO2 and Ta2O5 films. Surface and Coatings Technology, 2013, 236, 550-556.	2.2	72
13	Pulsed dc magnetron discharge for high-rate sputtering of thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 420-424.	0.9	71
14	Reactive magnetron sputtering of TiOx films. Surface and Coatings Technology, 2005, 193, 107-111.	2.2	69
15	Hard amorphous nanocomposite coatings with oxidation resistance above 1000°C. Advances in Applied Ceramics, 2008, 107, 148-154.	0.6	68
16	Tribological study of CNx films prepared by reactive d.c. magnetron sputtering. Wear, 1997, 213, 80-89.	1.5	66
17	A phenomenological equilibrium model applicable to high-power pulsed magnetron sputtering. Plasma Sources Science and Technology, 2010, 19, 065010.	1.3	66
18	Reactive magnetron sputtering of CNx films: Ion bombardment effects and process characterization using optical emission spectroscopy. Journal of Applied Physics, 1999, 86, 3646-3654.	1.1	61

Jaroslav VlÄek

#	Article	IF	CITATIONS
19	lon flux characteristics in high-power pulsed magnetron sputtering discharges. Europhysics Letters, 2007, 77, 45002.	0.7	61
20	High-temperature oxidation of TiN/CrN multilayers reactively sputtered at low temperatures. Surface and Coatings Technology, 1998, 98, 1497-1502.	2.2	59
21	Highly ionized fluxes of sputtered titanium atoms in high-power pulsed magnetron discharges. Plasma Sources Science and Technology, 2008, 17, 025010.	1.3	58
22	Benefits of the controlled reactive high-power impulse magnetron sputtering of stoichiometric ZrO2 films. Vacuum, 2015, 114, 131-141.	1.6	56
23	Influence of substrate bias voltage on structure and properties of hard Si–B–C–N films prepared by reactive magnetron sputtering. Diamond and Related Materials, 2007, 16, 29-36.	1.8	55
24	Structure-hardness relations in sputtered Ti–Al–V–N films. Thin Solid Films, 2003, 444, 189-198.	0.8	54
25	Magnetron sputtering of alloy and alloy-based films. Thin Solid Films, 1999, 343-344, 47-50.	0.8	53
26	Modeling of glow discharge optical emission spectrometry: Calculation of the argon atomic optical emission spectrum. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1998, 53, 1517-1526.	1.5	50
27	A perspective of magnetron sputtering in surface engineering. Surface and Coatings Technology, 1999, 112, 162-169.	2.2	50
28	High-rate reactive high-power impulse magnetron sputtering of hard and optically transparent HfO 2 films. Surface and Coatings Technology, 2016, 290, 58-64.	2.2	49
29	Influence of nitrogen–argon gas mixtures on reactive magnetron sputtering of hard Si–C–N films. Surface and Coatings Technology, 2002, 160, 74-81.	2.2	46
30	Absolute OH and O radical densities in effluent of a He/H ₂ O micro-scaled atmospheric pressure plasma jet. Plasma Sources Science and Technology, 2016, 25, 045013.	1.3	46
31	Significant improvement of the performance of ZrO2/V1-W O2/ZrO2 thermochromic coatings by utilizing a second-order interference. Solar Energy Materials and Solar Cells, 2019, 191, 365-371.	3.0	46
32	A collisional-radiative model applicable to argon discharges over a wide range of conditions. II. Application to low-pressure, hollow-cathode arc and low-pressure glow discharges. Journal Physics D: Applied Physics, 1989, 22, 632-643.	1.3	45
33	Effect of ion bombardment on properties of hard reactively sputtered Ti(Fe)Nx films. Surface and Coatings Technology, 2004, 177-178, 289-298.	2.2	43
34	Effect of the gas mixture composition on high-temperature behavior of magnetron sputtered Si–B–C–N coatings. Surface and Coatings Technology, 2008, 203, 466-469.	2.2	42
35	Thermal stability of magnetron sputtered Si–B–C–N materials at temperatures up to 1700°C. Thin Solid Films, 2010, 519, 306-311.	0.8	41
36	Comparison of hydrophilic properties of TiO2 thin films prepared by sol–gel method and reactive magnetron sputtering system. Thin Solid Films, 2011, 519, 6944-6950.	0.8	41

#	Article	IF	CITATIONS
37	Controlled reactive HiPIMS—effective technique for low-temperature (300 °C) synthesis of VO ₂ films with semiconductor-to-metal transition. Journal Physics D: Applied Physics, 2017, 50, 38LT01.	1.3	38
38	Recent progress in plasma nitriding. Vacuum, 2000, 59, 940-951.	1.6	37
39	Effect of nitrogen content on electronic structure and properties of SiBCN materials. Acta Materialia, 2011, 59, 2341-2349.	3.8	36
40	Microstructure characterization of high-temperature, oxidation-resistant Si-B-C-N films. Thin Solid Films, 2013, 542, 167-173.	0.8	35
41	Reactive magnetron sputtering of Si–C–N films with controlled mechanical and optical properties. Diamond and Related Materials, 2003, 12, 1287-1294.	1.8	34
42	Effect of B and the Si/C ratio on high-temperature stability of Si–B–C–N materials. Europhysics Letters, 2006, 76, 512-518.	0.7	34
43	A parametric model for reactive high-power impulse magnetron sputtering of films. Journal Physics D: Applied Physics, 2016, 49, 055202.	1.3	34
44	Characterization of thermochromic VO2 (prepared at 250 °C) in a wide temperature range by spectroscopic ellipsometry. Applied Surface Science, 2017, 421, 529-534.	3.1	34
45	Measurement of hardness of superhard films by microindentation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 340, 281-285.	2.6	33
46	Emission spectroscopy of the plasma in the cathode region of N2-H2abnormal glow discharges for steel surface nitriding. Journal Physics D: Applied Physics, 1993, 26, 585-589.	1.3	29
47	Formation of high temperature phases in sputter deposited Tiâ€based films below 100 °C. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 2247-2250.	0.9	29
48	Influence of substrate bias voltage on the properties of CNx films prepared by reactive magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 899-908.	0.9	29
49	High-rate reactive high-power impulse magnetron sputtering of Ta–O–N films with tunable composition and properties. Thin Solid Films, 2014, 566, 70-77.	0.8	29
50	High-performance thermochromic VO2-based coatings with a low transition temperature deposited on glass by a scalable technique. Scientific Reports, 2020, 10, 11107.	1.6	29
51	Langmuir probe measurements of plasma parameters in a planar magnetron with additional plasma confinement. Vacuum, 1999, 55, 165-170.	1.6	28
52	Superior high-temperature oxidation resistance of magnetron sputtered Hf–B–Si–C–N film. Ceramics International, 2016, 42, 4853-4859.	2.3	28
53	Magnetron sputtered Si–B–C–N films with high oxidation resistance and thermal stability in air at temperatures above 1500 °C. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 1101-1108.	0.9	27
54	High-temperature stability of the mechanical and optical properties of Si–B–C–N films prepared by magnetron sputtering. Thin Solid Films, 2009, 518, 174-179.	0.8	27

Jaroslav VlÄek

#	Article	IF	CITATIONS
55	Ion flux characteristics and efficiency of the deposition processes in high power impulse magnetron sputtering of zirconium. Journal of Applied Physics, 2010, 108, .	1.1	26
56	Properties of thermochromic VO2 films prepared by HiPIMS onto unbiased amorphous glass substrates at a low temperature of 300â€Â°C. Thin Solid Films, 2018, 660, 463-470.	0.8	26
57	Ab initiosimulations of nitrogen evolution in quenchedCNxand SiBCN amorphous materials. Physical Review B, 2005, 72, .	1.1	25
58	A study of the microstructure evolution of hard Zr–B–C–N films by high-resolution transmission electron microscopy. Acta Materialia, 2014, 77, 212-222.	3.8	25
59	Microstructure of hard and optically transparent HfO2 films prepared by high-power impulse magnetron sputtering with a pulsed oxygen flow control. Thin Solid Films, 2016, 619, 239-249.	0.8	25
60	A comparison of internal plasma parameters in a conventional planar magnetron and a magnetron with additional plasma confinement. Plasma Sources Science and Technology, 1997, 6, 46-52.	1.3	24
61	Improved performance of thermochromic VO2/SiO2 coatings prepared by low-temperature pulsed reactive magnetron sputtering: Prediction and experimental verification. Journal of Alloys and Compounds, 2018, 767, 46-51.	2.8	24
62	Mechanical and optical properties of quaternary Si–B–C–N films prepared by reactive magnetron sputtering. Thin Solid Films, 2008, 516, 7286-7293.	0.8	23
63	Hard nanocrystalline Zr–B–C–N films with high electrical conductivity prepared by pulsed magnetron sputtering. Surface and Coatings Technology, 2013, 215, 186-191.	2.2	23
64	A collisional-radiative model applicable to argon discharge over a wide range of conditions. IV. Application to inductively coupled plasmas. Journal Physics D: Applied Physics, 1991, 24, 309-317.	1.3	22
65	Morphology and Microstructure of Hard and Superhard Zr–Cu–N Nanocomposite Coatings. Japanese Journal of Applied Physics, 2002, 41, 6529-6533.	0.8	22
66	Pulsed reactive magnetron sputtering of high-temperature Si–B–C–N films with high optical transparency. Surface and Coatings Technology, 2013, 226, 34-39.	2.2	22
67	Structure and properties of Hf-O-N films prepared by high-rate reactive HiPIMS with smoothly controlled composition. Ceramics International, 2017, 43, 5661-5667.	2.3	22
68	The effect of nitrogen on analytical glow discharges studied by high resolution Fourier transform spectroscopy. Journal of Analytical Atomic Spectrometry, 2003, 18, 549-556.	1.6	21
69	Bonding statistics and electronic structure of novel Si–B–C–N materials: <i>Ab initio</i> calculations and experimental verification. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 1411-1416.	0.9	21
70	Hard multifunctional Hf–B–Si–C films prepared by pulsed magnetron sputtering. Surface and Coatings Technology, 2014, 257, 301-307.	2.2	20
71	Effect of the Si content on the microstructure of hard, multifunctional Hf–B–Si–C films prepared by pulsed magnetron sputtering. Applied Surface Science, 2015, 357, 1343-1354.	3.1	20
72	Thermal, mechanical and electrical properties of hard B4C, BCN, ZrBC and ZrBCN ceramics. Ceramics International, 2016, 42, 4361-4369.	2.3	20

#	Article	IF	CITATIONS
73	The effect of argon on the structure of amorphous SiBCN materials: an experimental andab initiostudy. Journal of Physics Condensed Matter, 2006, 18, 2337-2348.	0.7	19
74	Transport and ionization of sputtered atoms in high-power impulse magnetron sputtering discharges. Journal Physics D: Applied Physics, 2013, 46, 105203.	1.3	19
75	The depth profile analysis of W-Si-N coatings after thermal annealing. Surface and Coatings Technology, 2002, 161, 111-119.	2.2	18
76	Plasma nitriding combined with a hollow cathode discharge sputtering at high pressures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 2636-2643.	0.9	17
77	Magnetron sputtering of alloy-based films and its specifity. European Physical Journal D, 1998, 48, 1209-1224.	0.4	17
78	Effect of implanted argon on hardness of novel magnetron sputtered Si–B–C–N materials: experiments andab initiosimulations. Journal of Physics Condensed Matter, 2007, 19, 196228.	0.7	17
79	Thermal conductivity of high-temperature Si–B–C–N thin films. Surface and Coatings Technology, 2011, 206, 2030-2033.	2.2	17
80	Magnesium as a representative analyte metal in argon inductively coupled plasmas. I. An extensive collisional-radiative model. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1997, 52, 599-608.	1.5	16
81	Magnesium as a representative analyte metal in argon inductively coupled plasmas. II. Population mechanisms in analytical zones of different spectrochemical systems. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1997, 52, 609-619.	1.5	15
82	Optical emission spectra and ion energy distribution functions in TiN deposition process by reactive pulsed magnetron sputtering. Surface and Coatings Technology, 2005, 200, 835-840.	2.2	15
83	Production of Ti films with controlled texture. Surface and Coatings Technology, 1995, 76-77, 274-279.	2.2	14
84	Planar magnetron with additional plasma confinement. Vacuum, 1995, 46, 341-347.	1.6	14
85	Microwave plasma nitriding of a low-alloy steel. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 2715-2721.	0.9	14
86	Effect of N and Zr content on structure, electronic structure and properties of ZrBCN materials: An ab-initio study. Thin Solid Films, 2013, 542, 225-231.	0.8	14
87	Dependence of characteristics of MSiBCN (M = Ti, Zr, Hf) on the choice of metal element: Experimental and ab-initio study. Thin Solid Films, 2016, 616, 359-365.	0.8	14
88	Optical emission spectroscopy during the deposition of zirconium dioxide films by controlled reactive high-power impulse magnetron sputtering. Journal of Applied Physics, 2017, 121, .	1.1	14
89	Magnetron sputtered Hf–B–Si–C–N films with controlled electrical conductivity and optical transparency, and with ultrahigh oxidation resistance. Thin Solid Films, 2018, 653, 333-340.	0.8	14
90	Thermal annealing of sputtered Al–Si–Cu–N films. Vacuum, 2003, 72, 21-28.	1.6	13

#	Article	IF	CITATIONS
91	Synthesis of TiO2 photocatalyst and study on their improvement technology of photocatalytic activity. Surface and Coatings Technology, 2005, 200, 534-538.	2.2	13
92	Enhancement of the deposition rate in reactive mid-frequency ac magnetron sputtering of hard and optically transparent ZrO 2 films. Surface and Coatings Technology, 2018, 336, 54-60.	2.2	12
93	Collisional-radiative ionization and recombination in an inductively coupled argon plasma. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1992, 47, 681-688.	1.5	11
94	Surface morphology of sputter deposited low melting point metallic thin films. European Physical Journal D, 1994, 44, 565-574.	0.4	11
95	Anodic plasma nitriding with a molybdenum cathode. Vacuum, 1995, 46, 43-47.	1.6	11
96	Microstructure evolution in amorphous Hf-B-Si-C-N high temperature resistant coatings after annealing to 1500 °C in air. Scientific Reports, 2019, 9, 3603.	1.6	11
97	Pulsed Magnetron Sputtering of Strongly Thermochromic VO2-Based Coatings with a Transition Temperature of 22 ŰC onto Ultrathin Flexible Glass. Coatings, 2020, 10, 1258.	1.2	11
98	Ion Flux Characteristics in Pulsed Dual Magnetron Discharges Used for Deposition of Photoactive TiO ₂ Films. Plasma Processes and Polymers, 2011, 8, 191-199.	1.6	10
99	Dependence of structure and properties of hard nanocrystalline conductive films MBCN (M = Ti, Zr,) Tj ETQq1 1	0.784314 0.8	rg₿Ţ /Overl⊂
100	Ion-flux characteristics during low-temperature (300 °C) deposition of thermochromic VO ₂ films using controlled reactive HiPIMS. Journal Physics D: Applied Physics, 2019, 52, 025205.	1.3	10
101	Transfer of the sputter technique for deposition of strongly thermochromic VO2-based coatings on ultrathin flexible glass to large-scale roll-to-roll device. Surface and Coatings Technology, 2022, 442, 128273.	2.2	10
102	Electron energy distribution function in the collisional-radiative model of an argon plasma. Journal Physics D: Applied Physics, 1985, 18, 347-358.	1.3	9
103	Seebeck effect in polycrystalline semiconductors. Thin Solid Films, 1982, 92, 259-271.	0.8	8
104	Magnetron with gas injection through hollow cathodes machined in sputtered target. Surface and Coatings Technology, 2001, 148, 296-304.	2.2	8
105	Dynamics of processes during the deposition of ZrO2 films by controlled reactive high-power impulse magnetron sputtering: A modelling study. Journal of Applied Physics, 2017, 122, 043304.	1.1	8
106	Reactive high-power impulse magnetron sputtering of ZrO2 films with gradient ZrOx interlayers on pretreated steel substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, 031503.	0.9	7
107	Study of the high-temperature oxidation resistance mechanism of magnetron sputtered Hf7B23Si17C4N45 film. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	0.9	7

Effect of energetic particles on pulsed magnetron sputtering of hard nanocrystalline MBCN ($M\hat{a}\in=\hat{a}\in\mathsf{T}i, Zr,$) Tj ETQ00 0 0 rgBT /Overloc

#	Article	IF	CITATIONS
109	Dependence of characteristics of Hf(M)SiBCN (MÂ=ÂY, Ho, Ta, Mo) thin films on the M choice: Ab-initio and experimental study. Acta Materialia, 2021, 206, 116628.	3.8	7
110	Microstructure of high-performance thermochromic ZrO2/V0.984W0.016O2/ZrO2 coating with a low transition temperature (22°C) prepared on flexible glass. Surface and Coatings Technology, 2021, 424, 127654.	2.2	7
111	Ion-bombardment characteristics during deposition of TiN films using a grid-assisted magnetron system with enhanced plasma potential. Vacuum, 2007, 81, 1109-1113.	1.6	6
112	Effect of ion bombarding energies on photocatalytic TiO2 films growing in a pulsed dual magnetron discharge. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, .	0.9	6
113	Effect of voltage pulse characteristics on high-power impulse magnetron sputtering of copper. Plasma Sources Science and Technology, 2013, 22, 015009.	1.3	6
114	Depth profile analysis of minor elements by GD-OES: Applications to diffusion phenomena. Fresenius' Journal of Analytical Chemistry, 1996, 354, 188-192.	1.5	5
115	New approach to understanding the reactive magnetron sputtering of hard carbon nitride films. Diamond and Related Materials, 2000, 9, 582-586.	1.8	5
116	Thermal stability of structure, microstructure and enhanced properties of Zr–Ta–O films with a low and high Ta content. Surface and Coatings Technology, 2018, 335, 95-103.	2.2	5
117	Tunable composition and properties of Al-O-N films prepared by reactive deep oscillation magnetron sputtering. Surface and Coatings Technology, 2020, 392, 125716.	2.2	5
118	Extraordinary high-temperature behavior of electrically conductive Hf7B23Si22C6N40 ceramic film. Surface and Coatings Technology, 2020, 391, 125686.	2.2	5
119	Excited level populations of argon atoms in a non-isothermal plasma. Journal Physics D: Applied Physics, 1986, 19, 1879-1888.	1.3	4
120	Mutual interdiffusion of elements in steel and Ti coating and aluminium and Ti coating couples during plasma nitriding. Surface and Coatings Technology, 1995, 74-75, 609-613.	2.2	4
121	Enhancement of high-temperature oxidation resistance and thermal stability of hard and optically transparent Hf–B–Si–C–N films by Y or Ho addition. Journal of Non-Crystalline Solids, 2021, 553, 120470.	1.5	3
122	Coronal and Collisional — Radiative Model of the Plasma for the Case of Hydrogen Glow Discharge. Beitrage Aus Der Plasmaphysik, 1983, 23, 373-379.	0.1	2
123	Interdiffusion between Ti and steel elements in Ti coating/steel substrate couple. Vacuum, 1996, 47, 871-877.	1.6	2
124	Microstructure of High Temperature Oxidation Resistant Hf6B10Si31C2N50 and Hf7B10Si32C2N44 Films. Coatings, 2020, 10, 1170.	1.2	2
125	Phase transformation in sputtered Ti–SS alloy film during plasma nitriding. Thin Solid Films, 1998, 317, 458-462.	0.8	1
126	Fundamentals of elementary processes in plasmas. Surface and Coatings Technology, 1998, 98, 1557-1564.	2.2	1

#	Article	IF	CITATIONS
127	Effective nitriding of steels outside low-pressure microwave discharges. Surface and Coatings Technology, 2002, 156, 182-184.	2.2	1
128	Comment on two new collisional-radiative models for an argon plasma. Journal of Quantitative Spectroscopy and Radiative Transfer, 1992, 47, 431-432.	1.1	0
129	Effects of power per pulse on reactive HiPIMS deposition of ZrO2 films: A time-resolved optical emission spectroscopy study. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 061305.	0.9	0
130	Multifunctional MoOx and MoOxNy films with 2.5 < x < 3.0 and y < 0.2 prepared using controlled reactive deep oscillation magnetron sputtering. Thin Solid Films, 2021, 717, 138442.	0.8	0