Yaxin Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8438797/publications.pdf Version: 2024-02-01

YAVIN HUANC

#	Article	IF	CITATIONS
1	Sunlightâ€Coordinated Highâ€Performance Moisture Power in Natural Conditions. Advanced Materials, 2022, 34, e2103897.	11.1	54
2	Recent advances in highly integrated energy conversion and storage system. SusMat, 2022, 2, 142-160.	7.8	44
3	Moisture adsorption-desorption full cycle power generation. Nature Communications, 2022, 13, 2524.	5.8	67
4	Vapor and heat dual-drive sustainable power for portable electronics in ambient environments. Energy and Environmental Science, 2022, 15, 3086-3096.	15.6	21
5	Janus-interface engineering boosting solar steam towards high-efficiency water collection. Energy and Environmental Science, 2021, 14, 5330-5338.	15.6	122
6	Emerging Materials for Water-Enabled Electricity Generation. , 2021, 3, 193-209.		78
7	Graphene Oxide Assemblies for Sustainable Clean-Water Harvesting and Green-Electricity Generation. Accounts of Materials Research, 2021, 2, 97-107.	5.9	38
8	Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. Nature Nanotechnology, 2021, 16, 811-819.	15.6	193
9	High-performance flexible and integratable MEG devices from sulfonated carbon solid acids containing strong BrÃ,nsted acid sites. Journal of Materials Chemistry A, 2021, 9, 24488-24494.	5.2	8
10	Transparent, self-healing, arbitrary tailorable moist-electric film generator. Nano Energy, 2020, 67, 104238.	8.2	68
11	Highly Efficient Clean Water Production from Contaminated Air with a Wide Humidity Range. Advanced Materials, 2020, 32, e1905875.	11.1	123
12	Interface-enhanced distillation beyond tradition based on well-arranged graphene membrane. Science China Materials, 2020, 63, 1948-1956.	3.5	10
13	Twoâ€dimensional materials of groupâ€IVA boosting the development of energy storage and conversion. , 2020, 2, 54-71.		73
14	Moist-electric generation. Nanoscale, 2019, 11, 23083-23091.	2.8	82
15	MEG actualized by high-valent metal carrier transport. Nano Energy, 2019, 65, 104047.	8.2	40
16	All-region-applicable, continuous power supply of graphene oxide composite. Energy and Environmental Science, 2019, 12, 1848-1856.	15.6	150
17	Power generation from graphene-water interactions. FlatChem, 2019, 14, 100090.	2.8	38
18	An efficient polymer moist-electric generator. Energy and Environmental Science, 2019, 12, 972-978.	15.6	189

YAXIN HUANG

#	Article	IF	CITATIONS
19	Rollable, Stretchable, and Reconfigurable Graphene Hygroelectric Generators. Advanced Materials, 2019, 31, e1805705.	11.1	117
20	Hygroelectric Generators: Rollable, Stretchable, and Reconfigurable Graphene Hygroelectric Generators (Adv. Mater. 2/2019). Advanced Materials, 2019, 31, 1970013.	11.1	3
21	Direct solar steam generation system for clean water production. Energy Storage Materials, 2019, 18, 429-446.	9.5	234
22	Electric Power Generation through the Direct Interaction of Pristine Grapheneâ€Oxide with Water Molecules. Small, 2018, 14, e1704473.	5.2	138
23	Electric power generation <i>via</i> asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics. Energy and Environmental Science, 2018, 11, 1730-1735.	15.6	203
24	Flexible in-plane graphene oxide moisture-electric converter for touchless interactive panel. Nano Energy, 2018, 45, 37-43.	8.2	96
25	Graphene Platforms for Smart Energy Generation and Storage. Joule, 2018, 2, 245-268.	11.7	168
26	Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nature Communications, 2018, 9, 4166.	5.8	208
27	Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk. Energy and Environmental Science, 2018, 11, 2839-2845.	15.6	144
28	Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun. Journal of Materials Chemistry A, 2018, 6, 15303-15309.	5.2	146
29	Self-powered wearable graphene fiber for information expression. Nano Energy, 2017, 32, 329-335.	8.2	148
30	Highly Efficient Moisture-Triggered Nanogenerator Based on Graphene Quantum Dots. ACS Applied Materials & Interfaces, 2017, 9, 38170-38175.	4.0	96
31	Selfâ€Healing Graphene Oxide Based Functional Architectures Triggered by Moisture. Advanced Functional Materials, 2017, 27, 1703096.	7.8	94
32	Graphene-Based Functional Architectures: Sheets Regulation and Macrostructure Construction toward Actuators and Power Generators. Accounts of Chemical Research, 2017, 50, 1663-1671.	7.6	92
33	Graphene Oxide Nanoribbon Assembly toward Moistureâ€Powered Information Storage. Advanced Materials, 2017, 29, 1604972.	11.1	118
34	Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy and Environmental Science, 2016, 9, 912-916.	15.6	289
35	Direct Power Generation from a Graphene Oxide Film under Moisture. Advanced Materials, 2015, 27, 4351-4357.	11.1	418