## Shujie Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8438506/publications.pdf Version: 2024-02-01



SHUUE YANG

| #  | Article                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Wave number–spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells. Science Advances, 2019, 5, eaau6062.               | 4.7  | 146       |
| 2  | Digital acoustofluidics enables contactless and programmable liquid handling. Nature Communications, 2018, 9, 2928.                                         | 5.8  | 134       |
| 3  | Acoustofluidic Salivary Exosome Isolation. Journal of Molecular Diagnostics, 2020, 22, 50-59.                                                               | 1.2  | 104       |
| 4  | Acoustofluidic centrifuge for nanoparticle enrichment and separation. Science Advances, 2021, 7, .                                                          | 4.7  | 100       |
| 5  | Standing Surface Acoustic Wave (SSAW)â€Based Fluorescenceâ€Activated Cell Sorter. Small, 2018, 14,<br>e1801996.                                             | 5.2  | 83        |
| 6  | A disposable acoustofluidic chip for nano/microparticle separation using unidirectional acoustic transducers. Lab on A Chip, 2020, 20, 1298-1308.           | 3.1  | 76        |
| 7  | Surface acoustic waves enable rotational manipulation of <i>Caenorhabditis elegans</i> . Lab on A<br>Chip, 2019, 19, 984-992.                               | 3.1  | 69        |
| 8  | Acoustofluidicsâ€Assisted Fluorescence‧ERS Bimodal Biosensors. Small, 2020, 16, e2005179.                                                                   | 5.2  | 68        |
| 9  | Harmonic acoustics for dynamic and selective particle manipulation. Nature Materials, 2022, 21, 540-546.                                                    | 13.3 | 66        |
| 10 | Generating multifunctional acoustic tweezers in Petri dishes for contactless, precise manipulation of bioparticles. Science Advances, 2020, 6, .            | 4.7  | 59        |
| 11 | An acoustofluidic device for efficient mixing over a wide range of flow rates. Lab on A Chip, 2020, 20, 1238-1248.                                          | 3.1  | 56        |
| 12 | High-throughput cell focusing and separation <i>via</i> acoustofluidic tweezers. Lab on A Chip, 2018, 18, 3003-3010.                                        | 3.1  | 55        |
| 13 | Acoustofluidic Synthesis of Particulate Nanomaterials. Advanced Science, 2019, 6, 1900913.                                                                  | 5.6  | 49        |
| 14 | Cell lysis <i>via</i> acoustically oscillating sharp edges. Lab on A Chip, 2019, 19, 4021-4032.                                                             | 3.1  | 47        |
| 15 | Acoustic streaming vortices enable contactless, digital control of droplets. Science Advances, 2020,<br>6, eaba0606.                                        | 4.7  | 42        |
| 16 | On-chip stool liquefaction <i>via</i> acoustofluidics. Lab on A Chip, 2019, 19, 941-947.                                                                    | 3.1  | 38        |
| 17 | Electrochemical micro-aptasensors for exosome detection based on hybridization chain reaction amplification. Microsystems and Nanoengineering, 2021, 7, 63. | 3.4  | 38        |
| 18 | Acoustofluidic devices controlled by cell phones. Lab on A Chip, 2018, 18, 433-441.                                                                         | 3.1  | 32        |

Shujie Yang

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Acoustic tweezers based on circular, slanted-finger interdigital transducers for dynamic manipulation of micro-objects. Lab on A Chip, 2020, 20, 987-994.                                                                         | 3.1 | 32        |
| 20 | Acoustofluidic multimodal diagnostic system for Alzheimer's disease. Biosensors and Bioelectronics, 2022, 196, 113730.                                                                                                            | 5.3 | 31        |
| 21 | Contactless, programmable acoustofluidic manipulation of objects on water. Lab on A Chip, 2019, 19, 3397-3404.                                                                                                                    | 3.1 | 30        |
| 22 | Open source acoustofluidics. Lab on A Chip, 2019, 19, 2404-2414.                                                                                                                                                                  | 3.1 | 28        |
| 23 | Fluorescence-based sorting of <i>Caenorhabditis elegans via</i> acoustofluidics. Lab on A Chip, 2020, 20, 1729-1739.                                                                                                              | 3.1 | 27        |
| 24 | Acoustofluidics for simultaneous nanoparticle-based drug loading and exosome encapsulation.<br>Microsystems and Nanoengineering, 2022, 8, 45.                                                                                     | 3.4 | 27        |
| 25 | Acoustofluidic waveguides for localized control of acoustic wavefront in microfluidics.<br>Microfluidics and Nanofluidics, 2017, 21, 1.                                                                                           | 1.0 | 25        |
| 26 | Acoustofluidic separation enables early diagnosis of traumatic brain injury based on circulating exosomes. Microsystems and Nanoengineering, 2021, 7, 20.                                                                         | 3.4 | 22        |
| 27 | Low-frequency flexural wave based microparticle manipulation. Lab on A Chip, 2020, 20, 1281-1289.                                                                                                                                 | 3.1 | 21        |
| 28 | Acoustofluidic Droplet Sorter Based on Single Phase Focused Transducers. Small, 2021, 17, e2103848.                                                                                                                               | 5.2 | 17        |
| 29 | CMOS wireless stress sensor IC with 256â€cell sensing array for ultraâ€thin applications. Electronics<br>Letters, 2016, 52, 1660-1661.                                                                                            | 0.5 | 5         |
| 30 | Electrically Tunable Surface Acoustic Wave Propagation at MHz Frequencies Based on Carbon<br>Nanotube Thinâ€Film Transistors. Advanced Functional Materials, 2021, 31, 2010744.                                                   | 7.8 | 5         |
| 31 | The flexible package and applications of ultra-thin sensor chip. , 2015, , .                                                                                                                                                      |     | 4         |
| 32 | Heat-Depolymerizable Polypropylene Carbonate as a Temporary Bonding Adhesive for Fabrication of<br>Flexible Silicon Sensor Chips. IEEE Transactions on Components, Packaging and Manufacturing<br>Technology, 2017, 7, 1751-1758. | 1.4 | 4         |
| 33 | A CMOS stress sensor chip with integrated signal processing circuits. , 2015, , .                                                                                                                                                 |     | 3         |
| 34 | Fluorescence-Activated Cell Sorters: Standing Surface Acoustic Wave (SSAW)-Based<br>Fluorescence-Activated Cell Sorter (Small 40/2018). Small, 2018, 14, 1870185.                                                                 | 5.2 | 2         |
| 35 | Three-dimensional integration of suspended single-crystalline silicon MEMS arrays with CMOS. , 2015, ,                                                                                                                            |     | 1         |
| 36 | Fabrication of ultra-thin silicon chips using thermally decomposable temporary bonding adhesive. ,                                                                                                                                |     | 0         |

2016, , .