
Chryssostomos Chatgilialoglu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8438478/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Incorporation of 5',8-cyclo-2'deoxyadenosines by DNA repair polymerases via base excision repair. DNA Repair, 2022, 109, 103258.	1.3	3
2	Sapienic Acid Metabolism Influences Membrane Plasticity and Protein Signaling in Breast Cancer Cell Lines. Cells, 2022, 11, 225.	1.8	12
3	A convenient route to mono-trans polyunsaturated free fatty acids. Journal of Chemical Research, 2022, 46, 174751982210909.	0.6	1
4	Effects of Oxygen Tension for Membrane Lipidome Remodeling of Cockayne Syndrome Cell Models. Cells, 2022, 11, 1286.	1.8	6
5	Biomimetic Radical Chemistry and Applications. Molecules, 2022, 27, 2042.	1.7	3
6	Critical Review on Fatty Acid-Based Food and Nutraceuticals as Supporting Therapy in Cancer. International Journal of Molecular Sciences, 2022, 23, 6030.	1.8	6
7	Evaluation of Hydroxyl Radical Reactivity by Thioether Group Proximity in Model Peptide Backbone: Methionine versus S-Methyl-Cysteine. International Journal of Molecular Sciences, 2022, 23, 6550.	1.8	2
8	Polypyridylâ€Based Copper Phenanthrene Complexes: Combining Stability with Enhanced DNA Recognition. Chemistry - A European Journal, 2021, 27, 971-983.	1.7	17
9	On the relevance of hydroxyl radical to purine DNA damage. Free Radical Research, 2021, 55, 384-404.	1.5	38
10	Mathematical modelling of drug delivery from pH-responsive nanocontainers. Computers in Biology and Medicine, 2021, 131, 104238.	3.9	14
11	Radiation- and Photo-Induced Oxidation Pathways of Methionine in Model Peptide Backbone under Anoxic Conditions. International Journal of Molecular Sciences, 2021, 22, 4773.	1.8	8
12	A harmonized and standardized in vitro approach produces reliable results on silver nanoparticles toxicity in different cell lines. Journal of Applied Toxicology, 2021, 41, 1980-1997.	1.4	4
13	The Two Faces of the Guanyl Radical: Molecular Context and Behavior. Molecules, 2021, 26, 3511.	1.7	9
14	Biomimetic Ketone Reduction by Disulfide Radical Anion. Molecules, 2021, 26, 5429.	1.7	5
15	The Fatty Acid-Based Erythrocyte Membrane Lipidome in Dogs with Chronic Enteropathy. Animals, 2021, 11, 2604.	1.0	7
16	The bacterial protective armor against stress: The cis-trans isomerase of unsaturated fatty acids, a cytochrome-c type enzyme. Journal of Inorganic Biochemistry, 2021, 224, 111564.	1.5	7
17	Reductive Stress of Sulfur-Containing Amino Acids within Proteins and Implication of Tandem Protein–Lipid Damage. International Journal of Molecular Sciences, 2021, 22, 12863.	1.8	8
18	Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes. Canadian Journal of Physiology and Pharmacology, 2020, 98, 131-138.	0.7	19

#	Article	IF	CITATIONS
19	Oxygen-Dependent Accumulation of Purine DNA Lesions in Cockayne Syndrome Cells. Cells, 2020, 9, 1671.	1.8	19
20	Fatty Acid Remodeling of Membrane Glycerophospholipids Induced by Bleomycin and Iron Oxide Nanoparticles in Human Embryonic Kidney Cells. Chemical Research in Toxicology, 2020, 33, 2565-2572.	1.7	2
21	Free-Radical-Mediated Formation of Trans-Cardiolipin Isomers, Analytical Approaches for Lipidomics and Consequences of the Structural Organization of Membranes. Biomolecules, 2020, 10, 1189.	1.8	11
22	The Erythrocyte Membrane Lipidome of Healthy Dogs: Creating a Benchmark of Fatty Acid Distribution and Interval Values. Frontiers in Veterinary Science, 2020, 7, 502.	0.9	6
23	Increased levels of 5′,8-Cyclopurine DNA lesions in inflammatory bowel diseases. Redox Biology, 2020, 34, 101562.	3.9	12
24	Oxygen Dependent Purine Lesions in Double-Stranded Oligodeoxynucleotides: Kinetic and Computational Studies Highlight the Mechanism for 5′,8-Cyclopurine Formation. Journal of the American Chemical Society, 2020, 142, 5825-5833.	6.6	19
25	The n-10 Fatty Acids Family in the Lipidome of Human Prostatic Adenocarcinoma Cell Membranes and Extracellular Vesicles. Cancers, 2020, 12, 900.	1.7	21
26	Cyclopurine (cPu) lesions: what, how, and why?. Free Radical Research, 2019, 53, 941-943.	1.5	12
27	Purine DNA Lesions at Different Oxygen Concentration in DNA Repair-Impaired Human Cells (EUE-siXPA). Cells, 2019, 8, 1377.	1.8	15
28	Converging Fate of the Oxidation and Reduction of 8-Thioguanosine. Molecules, 2019, 24, 3143.	1.7	6
29	The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity. Molecules, 2019, 24, 3085.	1.7	3
30	Melon juice concentrate supplementation in an animal model of obesity: Involvement of relaxin and fatty acid pathways. Journal of Functional Foods, 2019, 59, 92-100.	1.6	2
31	5′,8-Cyclopurine Lesions in DNA Damage: Chemical, Analytical, Biological, and Diagnostic Significance. Cells, 2019, 8, 513.	1.8	43
32	Lipidomic biomarkers and mechanisms of lipotoxicity in non-alcoholic fatty liver disease. Free Radical Biology and Medicine, 2019, 144, 293-309.	1.3	146
33	Assessment of DNA Topoisomerase I Unwinding Activity, Radical Scavenging Capacity, and Inhibition of Breast Cancer Cell Viability of N-alkyl-acridones and N,N′-dialkyl-9,9′-biacridylidenes. Biomolecules, 2019, 9, 177.	1.8	8
34	High levels of oxidatively generated DNA damage 8,5′-cyclo-2′-deoxyadenosine accumulate in the brain tissues of xeroderma pigmentosum group A gene-knockout mice. DNA Repair, 2019, 80, 52-58.	1.3	25
35	Membrane Lipidome Reorganization and Accumulation of Tissue DNA Lesions in Tumor-Bearing Mice: An Exploratory Study. Cancers, 2019, 11, 480.	1.7	15
36	Diastereomeric Recognition of 5',8-cyclo-2'-Deoxyadenosine Lesions by Human Poly(ADP-ribose) Polymerase 1 in a Biomimetic Model. Cells, 2019, 8, 116.	1.8	7

#	Article	IF	CITATIONS
37	Hexadecenoic Fatty Acid Positional Isomers and De Novo PUFA Synthesis in Colon Cancer Cells. International Journal of Molecular Sciences, 2019, 20, 832.	1.8	35
38	New Insights into the Reaction Paths of Hydroxyl Radicals with Purine Moieties in DNA and Double-Stranded Oligodeoxynucleotides. Molecules, 2019, 24, 3860.	1.7	22
39	Polypyridylâ€Based Copper Phenanthrene Complexes: A New Type of Stabilized Artificial Chemical Nuclease. Chemistry - A European Journal, 2019, 25, 221-237.	1.7	29
40	Nucleotide Excision Repair and Impact of Site-Specific 5′,8-Cyclopurine and Bulky DNA Lesions on the Physical Properties of Nucleosomes. Biochemistry, 2019, 58, 561-574.	1.2	18
41	Frontispiece: Polypyridylâ€Based Copper Phenanthrene Complexes: A New Type of Stabilized Artificial Chemical Nuclease. Chemistry - A European Journal, 2019, 25, .	1.7	0
42	Trans Lipid Library: Synthesis of Docosahexaenoic Acid (DHA) Monotrans Isomers and Regioisomer Identification in DHA-Containing Supplements. Chemical Research in Toxicology, 2018, 31, 191-200.	1.7	8
43	Effect of 5-trans Isomer of Arachidonic Acid on Model Liposomal Membranes Studied by a Combined Simulation and Experimental Approach. Journal of Membrane Biology, 2018, 251, 475-489.	1.0	4
44	Analysis of the soybean metallothionein system under free radical stress: protein modification connected to lipid membrane damage. Metallomics, 2018, 10, 1792-1804.	1.0	5
45	[Cu(TPMA)(Phen)](ClO ₄) ₂ : Metallodrug Nanocontainer Delivery and Membrane Lipidomics of a Neuroblastoma Cell Line Coupled with a Liposome Biomimetic Model Focusing on Fatty Acid Reactivity. ACS Omega, 2018, 3, 15952-15965.	1.6	12
46	Development of multi-layered and multi-sensitive polymeric nanocontainers for cancer therapy: in vitro evaluation. Scientific Reports, 2018, 8, 14704.	1.6	16
47	Fatty Acid-based Membrane Lipidomics: Why, What and When. Journal of Glycomics & Lipidomics, 2018, 07, .	0.4	0
48	Lipid profile changes in erythrocyte membranes of women with diagnosed GDM. PLoS ONE, 2018, 13, e0203799.	1.1	13
49	Hippocampal lipidome and transcriptome profile alterations triggered by acute exposure of mice to <scp>CSM</scp> 1800 <scp>MH</scp> z mobile phone radiation: An exploratory study. Brain and Behavior, 2018, 8, e01001.	1.0	26
50	Thirty Years of (TMS) ₃ SiH: A Milestone in Radical-Based Synthetic Chemistry. Chemical Reviews, 2018, 118, 6516-6572.	23.0	207
51	Hydrogen Sulfide: A Reagent for pH-Driven Bioinspired 1,2-Diol Mono-deoxygenation and Carbonyl Reduction in Water. Organic Letters, 2018, 20, 4290-4294.	2.4	10
52	Radical Arene Addition vs Radical Reduction: Why Organometal Hydride Chain Reactions Stop and How To Make Them Go. Journal of Organic Chemistry, 2018, 83, 10037-10050.	1.7	5
53	Why Not Trans? Inhibited Radical Isomerization Cycles and Coupling Chains of Lipids and Alkenes with Alkane <i>-</i> thiols. Journal of Organic Chemistry, 2018, 83, 9178-9189.	1.7	14
54	The Reaction of Thiyl Radical with Methyl Linoleate: Completing the Picture. Journal of the American Chemical Society, 2017, 139, 4704-4714.	6.6	35

#	Article	IF	CITATIONS
55	Purine 5′,8-cyclo-2′-deoxynucleoside lesions: formation by radical stress and repair in human breast epithelial cancer cells. Free Radical Research, 2017, 51, 470-482.	1.5	21
56	Lipinutragen Srl is the first company that brings to the market an innovative approach of molecular medicine: cell membrane lipidomics and NUTRILIPIDOMICS, molecular diagnostics towards nutraceuticals and nutrition for a personalized approach in health care. Impact, 2017, 2017, 89-91.	0.0	0
57	Fatty acid-based lipidomics and membrane remodeling induced by apoE3 and apoE4 in human neuroblastoma cells. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1967-1973.	1.4	12
58	trans-Double Bond-Containing Liposomes as Potential Carriers for Drug Delivery. Molecules, 2017, 22, 2082.	1.7	14
59	High predictive values of RBC membrane-based diagnostics by biophotonics in an integrated approach for Autism Spectrum Disorders. Scientific Reports, 2017, 7, 9854.	1.6	28
60	Fatty Acids in Membranes as Homeostatic, Metabolic and Nutritional Biomarkers: Recent Advancements in Analytics and Diagnostics. Diagnostics, 2017, 7, 1.	1.3	102
61	Radiation chemical studies of Cly-Met-Gly in aqueous solution. Free Radical Research, 2016, 50, S24-S39.	1.5	13
62	Fatty acid-related modulations of membrane fluidity in cells: detection and implications. Free Radical Research, 2016, 50, S40-S50.	1.5	112
63	Radical-induced purine lesion formation is dependent on DNA helical topology. Free Radical Research, 2016, 50, S91-S101.	1.5	11
64	The influence of antioxidants in the thiyl radical induced lipid peroxidation and geometrical isomerization in micelles of linoleic acid. Free Radical Research, 2016, 50, S18-S23.	1.5	10
65	Biomimetic radical chemistry. Free Radical Research, 2016, 50, S1-S1.	1.5	0
66	Radicals and Dormant Species in Biology and Polymer Chemistry. ChemPlusChem, 2016, 81, 11-29.	1.3	16
67	The reactivity of (Me3Si)3SiH with sulfoxides under free radical conditions. Tetrahedron, 2016, 72, 7764-7769.	1.0	4
68	Purine 5′,8-cyclo-2′-deoxynucleoside lesions in irradiated DNA. Radiation Physics and Chemistry, 2016, 128, 75-81.	1.4	6
69	Effects of bleomycin and antioxidants on the fatty acid profile of testicular cancer cell membranes. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 434-441.	1.4	24
70	The effect of aromatic amines and phenols in the thiyl-induced reactions of polyunsaturated fatty acids. Radiation Physics and Chemistry, 2016, 124, 104-110.	1.4	6
71	Hexadecenoic Fatty Acid Isomers in Human Blood Lipids and Their Relevance for the Interpretation of Lipidomic Profiles. PLoS ONE, 2016, 11, e0152378.	1.1	63
72	A Promising Raman Spectroscopy Technique for the Investigation of trans and cis Cholesteryl Ester Isomers in Biological Samples. Applied Spectroscopy, 2015, 69, 613-622.	1.2	10

#	Article	IF	CITATIONS
73	Radiation-induced formation of purine lesions in single and double stranded DNA: revised quantification. Frontiers in Chemistry, 2015, 3, 18.	1.8	17
74	The association constant of 5′,8-cyclo-2′-deoxyguanosine with cytidine. Frontiers in Chemistry, 2015, 3, 22.	1.8	4
75	An ameliorative protocol for the quantification of purine 5′,8-cyclo-2′-deoxynucleosides in oxidized DNA. Frontiers in Chemistry, 2015, 3, 47.	1.8	23
76	Editorial: Radiation-induced and oxidative DNA damages. Frontiers in Chemistry, 2015, 3, 54.	1.8	7
77	Nutrition and Reproductive Health: Sperm versus Erythrocyte Lipidomic Profile and <i>ï‰</i> -3 Intake. Journal of Nutrition and Metabolism, 2015, 2015, 1-8.	0.7	8
78	The mitochondrial-targeted antioxidant, MitoQ, increases liver mitochondrial cardiolipin content in obesogenic diet-fed rats. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1025-1035.	0.5	40
79	DNA oxidation profiles of copper phenanthrene chemical nucleases. Frontiers in Chemistry, 2015, 3, 28.	1.8	41
80	Differences in the Access of Lesions to the Nucleotide Excision Repair Machinery in Nucleosomes. Biochemistry, 2015, 54, 4181-4185.	1.2	15
81	Delocalized Hole Domains in Guanine-Rich DNA Oligonucleotides. Journal of Physical Chemistry B, 2015, 119, 5462-5466.	1.2	33
82	Beta cell response to nutrient overload involves phospholipid remodelling and lipid peroxidation. Diabetologia, 2015, 58, 1333-1343.	2.9	32
83	Bypass of a 5′,8-cyclopurine-2′-deoxynucleoside by DNA polymerase β during DNA replication and base excision repair leads to nucleotide misinsertions and DNA strand breaks. DNA Repair, 2015, 33, 24-34.	1.3	22
84	Bleomycin-induced trans lipid formation in cell membranes and in liposome models. Organic and Biomolecular Chemistry, 2015, 13, 1100-1105.	1.5	15
85	Biomimetic chemistry on the protection of cis phospholipid from the thiyl radical isomerization by common antioxidants. Arkivoc, 2015, 2015, 140-153.	0.3	8
86	Structural basis for the recognition of diastereomeric 5′,8-cyclo-2′-deoxypurine lesions by the human nucleotide excision repair system. Nucleic Acids Research, 2014, 42, 5020-5032.	6.5	69
87	A 5′, 8-cyclo-2′-deoxypurine lesion induces trinucleotide repeat deletion via a unique lesion bypass by DNA polymerase β. Nucleic Acids Research, 2014, 42, 13749-13763.	6.5	31
88	Lipid Geometrical Isomerism: From Chemistry to Biology and Diagnostics. Chemical Reviews, 2014, 114, 255-284.	23.0	157
89	A lipophilic "fully-anti―dodecamer from a (5′S)-5′,8-cyclo-2′-deoxyguanosine. Chemical Communicat 2014, 50, 10722-10725.	tions, 2.2	3
90	A problem solving approach for the diastereoselective synthesis of (5′S)- and (5′R)-5′,8-cyclopurine lesions. Organic Chemistry Frontiers, 2014, 1, 698.	2.3	11

#	Article	IF	CITATIONS
91	Biomimetic Thiyl Radical Chemistry by γâ€Irradiation of Micelles and Vesicles Containing Unsaturated Fatty Acids. Israel Journal of Chemistry, 2014, 54, 242-247.	1.0	10
92	Signaling properties of 4-hydroxyalkenals formed by lipid peroxidation in diabetes. Free Radical Biology and Medicine, 2013, 65, 978-987.	1.3	96
93	Radical Cascade Protocol for the Synthesis of (5'S)- and (5'R)-5',8-Cyclo-2'-deoxyguanosine Derivatives. Australian Journal of Chemistry, 2013, 66, 330.	0.5	10
94	Non-enzymatic modifications in metallothioneins connected to lipid membrane damages: Structural and biomimetic studies under reductive radical stress. Journal of Proteomics, 2013, 92, 204-215.	1.2	14
95	Hexadecenoic Fatty Acid Isomers: A Chemical Biology Approach for Human Plasma Biomarker Development. Chemical Research in Toxicology, 2013, 26, 1703-1709.	1.7	52
96	Free Radicals in Chemical Biology: from Chemical Behavior to Biomarker Development. Journal of Visualized Experiments, 2013, , .	0.2	4
97	Effects of Elaidic Acid on Lipid Metabolism in HepG2 Cells, Investigated by an Integrated Approach of Lipidomics, Transcriptomics and Proteomics. PLoS ONE, 2013, 8, e74283.	1.1	35
98	Biomimetic Models of Radical Stress and Related Biomarkers. Chimia, 2012, 66, 368.	0.3	7
99	Nutrilipidomics: A Tool for Personalized Health. Journal of Glycomics & Lipidomics, 2012, 02, .	0.4	8
100	Recent Applications of the (TMS)3SiH Radical-Based Reagent. Molecules, 2012, 17, 527-555.	1.7	87
101	Revisiting the reaction of hydroxyl radicals with vicinal diols in water. Organic and Biomolecular Chemistry, 2012, 10, 1102-1107.	1.5	14
102	Trans Fatty Acids: Chemical Synthesis of Eicosapentaenoic Acid Isomers and Detection in Rats Fed a Deodorized Fish Oil Diet. Chemical Research in Toxicology, 2012, 25, 687-694.	1.7	27
103	Investigation of reactions postulated to occur during inhibition of ribonucleotide reductases by 2′-azido-2′-deoxynucleotides. Tetrahedron, 2012, 68, 5655-5667.	1.0	1
104	Kinetic Studies on the Formation of Sulfonyl Radicals and Their Addition to Carbon–Carbon Multiple Bonds. Journal of Physical Chemistry A, 2012, 116, 7623-7628.	1.1	35
105	Rat liver mitochondrial membrane characteristics and mitochondrial functions are more profoundly altered by dietary lipid quantity than by dietary lipid quality: effect of different nutritional lipid patterns. British Journal of Nutrition, 2012, 107, 647-659.	1.2	67
106	trans Arachidonic acid isomers inhibit NADPH-oxidase activity by direct interaction with enzyme components. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2314-2324.	1.4	28
107	Role of fatty acid-based functional lipidomics in the development of molecular diagnostic tools. Expert Review of Molecular Diagnostics, 2012, 12, 767-780.	1.5	75
108	Purine 5′,8-cyclonucleoside lesions: chemistry and biology. Chemical Society Reviews, 2011, 40, 1368.	18.7	131

#	Article	IF	CITATIONS
109	Human serum albumin modifications associated with reductive radical stress. Molecular BioSystems, 2011, 7, 889-898.	2.9	42
110	New Insights into the Reaction Paths of Hydroxyl Radicals with 2′-Deoxyguanosine. Chemical Research in Toxicology, 2011, 24, 2200-2206.	1.7	63
111	Lipid Markers of "Geometrical―Radical Stress: Synthesis of Monotrans Cholesteryl Ester Isomers and Detection in Human Plasma. Journal of the American Chemical Society, 2011, 133, 15184-15190.	6.6	23
112	Radiation-induced reductive modifications of sulfur-containing amino acids within peptides and proteins. Journal of Proteomics, 2011, 74, 2264-2273.	1.2	40
113	Linoleic acid peroxidation vs. isomerization: a biomimetic model of free radical reactivity in the presence of thiols. Organic and Biomolecular Chemistry, 2011, 9, 3541.	1.5	37
114	Radical-based alkylation of guanine derivatives in aqueous medium. Organic and Biomolecular Chemistry, 2011, 9, 3494.	1.5	11
115	Role of Lipid Peroxidation and PPAR-δin Amplifying Glucose-Stimulated Insulin Secretion. Diabetes, 2011, 60, 2830-2842.	0.3	93
116	Combined Raman and IR spectroscopic study on the radical-based modifications of methionine. Analytical and Bioanalytical Chemistry, 2011, 401, 1231-1239.	1.9	31
117	Investigation of Excessâ€Electron Transfer in DNA Doubleâ€Duplex Systems Allows Estimation of Absolute Excessâ€Electron Transfer and CPD Cleavage Rates. Chemistry - A European Journal, 2011, 17, 206-212.	1.7	26
118	Effects of oxygen and antioxidants on the cis-trans-isomerization of unsaturated fatty acids caused by thiyl radicals. Moscow University Chemistry Bulletin, 2010, 65, 210-211.	0.2	1
119	Base-Promoted Reaction of 5-Hydroxyuracil Derivatives with Peroxyl Radicals. Organic Letters, 2010, 12, 4130-4133.	2.4	29
120	Separation of cis/trans geometrical fatty acid isomers by silver-exchanged zeolite Y. Tetrahedron, 2010, 66, 2203-2209.	1.0	7
121	One-Electron Reduction of 8-Bromoisoguanosine and 8-Bromoxanthosine in the Aqueous Phase: Sequential versus Concerted Proton-Coupled Electron Routes. Journal of Physical Chemistry Letters, 2010, 1, 174-177.	2.1	5
122	Radiation Chemical Studies of Methionine in Aqueous Solution: Understanding the Role of Molecular Oxygen. Chemical Research in Toxicology, 2010, 23, 258-263.	1.7	46
123	Radiation-induced formation of purine 5′,8-cyclonucleosides in isolated and cellular DNA: high stereospecificity and modulating effect of oxygen. Organic and Biomolecular Chemistry, 2010, 8, 3211.	1.5	91
124	Zinc and Cadmium Complexes of a Plant Metallothionein under Radical Stress: Desulfurisation Reactions Associated with the Formation of <i>trans</i> ‣ipids in Model Membranes. Chemistry - A European Journal, 2009, 15, 6015-6024.	1.7	32
125	Rate constants and transitionâ€state geometry of reactions of alkyl, alkoxyl, and peroxyl radicals with thiols. International Journal of Chemical Kinetics, 2009, 41, 284-293.	1.0	47
126	A Reevaluation of the Ambident Reactivity of the Guanine Moiety Towards Hydroxyl Radicals. Angewandte Chemie - International Edition, 2009, 48, 2214-2217.	7.2	87

#	Article	IF	CITATIONS
127	Comparison of Isoelectronic 8-HO-G and 8-NH ₂ -G Derivatives in Redox Processes. Journal of the American Chemical Society, 2009, 131, 15895-15902.	6.6	11
128	Hydrosilylation of Câ^'C Multiple Bonds Using (Me ₃ Si) ₃ SiH in Water. Comparative Study of the Radical Initiation Step. Organometallics, 2009, 28, 3282-3287.	1.1	43
129	Membrane Lipidomics and the Geometry of Unsaturated Fatty Acids From Biomimetic Models to Biological Consequences. Methods in Molecular Biology, 2009, 579, 391-411.	0.4	22
130	Reaction of Hydrated Electrons with Guanine Derivatives: Tautomerism of Intermediate Species. Journal of Physical Chemistry B, 2009, 113, 2170-2176.	1.2	12
131	(Me ₃ Si) ₃ SiH: Twenty Years After Its Discovery as a Radicalâ€Based Reducing Agent. Chemistry - A European Journal, 2008, 14, 2310-2320.	1.7	144
132	Synthesis of all-trans anandamide: A substrate for fatty acid amide hydrolase with dual effects on rabbit platelet activation. Bioorganic and Medicinal Chemistry, 2008, 16, 8359-8365.	1.4	9
133	Silyl Radicals in Chemical Synthesis. Advances in Organometallic Chemistry, 2008, 57, 117-181.	0.5	49
134	Fatty Acid Profile of Erythrocyte Membranes As Possible Biomarker of Longevity. Rejuvenation Research, 2008, 11, 63-72.	0.9	87
135	Lipid metabolism and diet: Possible mechanisms of slow aging. International Journal of Biochemistry and Cell Biology, 2008, 40, 324-333.	1.2	25
136	Solar one-way photoisomerisation of 5′,8-cyclo-2′-deoxyadenosine. Organic and Biomolecular Chemistry, 2008, 6, 1083.	1.5	6
137	One-Electron Reduction of 8-Bromo-2-aminoadenosine in the Aqueous Phase:  Radiation Chemical and DFT Studies of the Mechanism. Journal of Physical Chemistry B, 2008, 112, 5209-5217.	1.2	9
138	The Reductive Desulfurization of Met and Cys Residues in Bovine RNase A Is Associated with <i>trans</i> Lipids Formation in a Mimetic Model of Biological Membranes. Journal of Proteome Research, 2008, 7, 2007-2015.	1.8	35
139	The Fate of C5′ Radicals of Purine Nucleosides under Oxidative Conditions. Journal of the American Chemical Society, 2008, 130, 8377-8385.	6.6	56
140	Biomimetic Chemistry on Tandem Protein/Lipid Damages under Reductive Radical Stress. Chimia, 2008, 62, 721-727.	0.3	9
141	Lipidomics and Free Radical Modifications of Lipids. Chimia, 2008, 62, 713.	0.3	3
142	DNA Damage and Radical Reactions: Mechanistic Aspects, Formation in Cells and Repair Studies. Chimia, 2008, 62, 742-749.	0.3	19
143	Biologically Relevant Small Radicals. Chimia, 2008, 62, 704-712.	0.3	19
144	Transferring Chemical Research to a Spin-off Initiative in Health Care: The Lipidomic Approach. Industry and Higher Education, 2008, 22, 403-409.	1.4	0

#	Article	IF	CITATIONS
145	Free Radicals in Chemical Biology. Chimia, 2008, 62, 703.	0.3	Ο
146	Independent Generation of C5â€~-Nucleosidyl Radicals in Thymidine and 2â€~-Deoxyguanosine. Journal of Organic Chemistry, 2007, 72, 3659-3666.	1.7	39
147	(5′ <i>S</i>)- and (5′ <i>R</i>)-5′,8-Cyclo-2′-deoxyguanosine: Mechanistic Insights on the 2′-Deoxyguanosin-5′-yl Radical Cyclization. Chemical Research in Toxicology, 2007, 20, 1820-1824.	1.7	54
148	One-Electron Reduction of Methanesulfonyl Chloride. The Fate of MeSO2Cl•-and MeSO2•Intermediates in Oxygenated Solutions and Their Role in the Cisâ^'Trans Isomerization of Mono-unsaturated Fatty Acids. Journal of the American Chemical Society, 2007, 129, 8716-8723.	6.6	30
149	Radical Carbonylation with [11C]Carbon Monoxide Promoted by Oxygen-Centered Radicals:Â Experimental and DFT Studies of the Mechanism. Journal of the American Chemical Society, 2007, 129, 9020-9031.	6.6	29
150	Radical Reactions in Aqueous Medium Using (Me ₃ Si) ₃ SiH. Organic Letters, 2007, 9, 5159-5162.	2.4	86
151	Reactions of Hydrogen Atoms with Met-Enkephalin and Related Peptides. Chemistry - A European Journal, 2007, 13, 2029-2033.	1.7	27
152	Ring Opening of the Cyclobutane in a Thymine Dimer Radical Anion. Chemistry - A European Journal, 2007, 13, 8979-8984.	1.7	24
153	The Sulfhydryl Radical (HS./S.â^'): A Contender for the Isomerization of Double Bonds in Membrane Lipids. Angewandte Chemie - International Edition, 2007, 46, 1914-1916.	7.2	47
154	Trans Fatty Acids in Membranes: The Free Radical Path. Molecular Biotechnology, 2007, 37, 19-25.	1.3	25
155	Probing the influence of cis–trans isomers on model lipid membrane fluidity using cis-parinaric acid and a stop-flow technique. Chemical Communications, 2006, , 529-531.	2.2	15
156	C5â€~-Adenosinyl Radical Cyclization. A Stereochemical Investigation. Journal of Organic Chemistry, 2006, 71, 4445-4452.	1.7	38
157	Tautomerism in the Guanyl Radical. Journal of the American Chemical Society, 2006, 128, 13796-13805.	6.6	74
158	trans-Fatty acids and radical stress: What are the real culprits?. Bioorganic and Medicinal Chemistry, 2006, 14, 6144-6148.	1.4	37
159	A facile one-pot synthesis of 8-oxo-7,8-dihydro-(2′-deoxy)adenosine in water. Tetrahedron Letters, 2006, 47, 711-714.	0.7	19
160	Comparison of Phosphatidylcholine Vesicle Properties Related to Geometrical Isomerismâ€. Photochemistry and Photobiology, 2006, 82, 274.	1.3	23
161	Occurrence of trans fatty acids in rats fed a trans-free diet: A free radical-mediated formation?. Free Radical Biology and Medicine, 2006, 40, 1549-1556.	1.3	67
162	Chemical Radiation Studies of 8-Bromo-2′-deoxyinosine and 8-Bromoinosine in Aqueous Solutions. Chemistry - A European Journal, 2006, 12, 7684-7693.	1.7	14

#	Article	IF	CITATIONS
163	The Reaction of Hydrogen Atoms with Methionine Residues: A Model of Reductive Radical Stress Causing Tandem Protein-Lipid Damage. ChemBioChem, 2006, 7, 1738-1744.	1.3	27
164	Investigation of radical-based damage of RNase A in aqueous solution and lipid vesicles. Biopolymers, 2006, 81, 39-50.	1.2	26
165	Complex Sequence Dependence by Excess-Electron Transfer through DNA with Different Strength Electron Acceptors. Angewandte Chemie - International Edition, 2006, 45, 318-321.	7.2	63
166	Reductive Modification of a Methionine Residue in the Amyloid-β Peptide. Angewandte Chemie - International Edition, 2006, 45, 2595-2598.	7.2	37
167	Epoxidation of Polyunsaturated Fatty Acid Double Bonds by Dioxirane Reagent: Regioselectivity and Lipid Supramolecular Organization. Helvetica Chimica Acta, 2006, 89, 2243-2253.	1.0	8
168	The Tris(trimethylsilyl)silane/Thiol Reducing System: A Tool for Measuring Rate Constants for Reactions of Carbon-Centered Radicals with Thiols. Helvetica Chimica Acta, 2006, 89, 2387-2398.	1.0	33
169	The reaction of benzothiazole sulfenamide with (TMS)3SiH: An example of degenerate-branched chain process. Journal of Organometallic Chemistry, 2005, 690, 1756-1762.	0.8	7
170	Radiation damage of lysozyme in a biomimetic model: some insights by Raman spectroscopy. Journal of Molecular Structure, 2005, 744-747, 767-773.	1.8	29
171	Synthesis of all-trans arachidonic acid and its effect on rabbit platelet aggregation. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2766-2770.	1.0	15
172	lipid formation induced by thiols in human monocytic leukemia cells. Free Radical Biology and Medicine, 2005, 38, 1180-1187.	1.3	73
173	Radical Cyclization Approach to Cyclonucleosides. European Journal of Organic Chemistry, 2005, 2005, 4640-4648.	1.2	23
174	The Kinetics ofZ/E Isomerization of Methyl Oleate Catalyzed by Photogenerated Thiyl Radicals. ChemPhysChem, 2005, 6, 286-291.	1.0	48
175	The Influence of Solid-State Molecular Organization on the Reaction Paths of Thiyl Radicals. ChemPhysChem, 2005, 6, 1100-1107.	1.0	17
176	Tautomers of One-Electron-Oxidized Guanosine. Angewandte Chemie - International Edition, 2005, 44, 6030-6032.	7.2	63
177	Geometrical trans Lipid Isomers: A New Target for Lipidomics. ChemBioChem, 2005, 6, 1722-1734.	1.3	44
178	trans Lipids: The Free Radical Path. ChemInform, 2005, 36, no.	0.1	93
179	Reactions of oxide radical ion (Oâ^') with pyrimidine nucleosides. Radiation Physics and Chemistry, 2005, 72, 251-256.	1.4	6
180	Trans fatty acids and atopic eczema/dermatitis syndrome: The relationship with a free radical cis-trans isomerization of membrane lipids. Lipids, 2005, 40, 661-667.	0.7	37

#	Article	IF	CITATIONS
181	The Radical-Based Reduction with (TMS)3SiH â€~On Water'. Synlett, 2005, 2005, 2854-2856.	1.0	7
182	Trans Lipids:  The Free Radical Path. Accounts of Chemical Research, 2005, 38, 441-448.	7.6	128
183	Liquid-Phase Oxidation of Pentamethyldisilane with Oxygen. Russian Journal of General Chemistry, 2004, 74, 469.	0.3	0
184	Thermal decomposition of the tert-butyl perester of thymidine-5′-carboxylic acid. Formation and fate of the pseudo-C4′ radical. Tetrahedron, 2004, 60, 4303-4308.	1.0	18
185	Liquid-phase oxidation of tert-butyldimethylsilane. Russian Journal of General Chemistry, 2004, 74, 1508-1512.	0.3	1
186	Thiyl radical-catalyzed isomerization of oils: An entry to the trans lipid library. JAOCS, Journal of the American Oil Chemists' Society, 2004, 81, 753-758.	0.8	22
187	A Biomimetic Model of Tandem Radical Damage Involving Sulfur-Containing Proteins and Unsaturated Lipids. ChemBioChem, 2004, 5, 1710-1712.	1.3	21
188	Selective Generation and Reactivity of 5′-Adenosinyl and 2′-Adenosinyl Radicals. Chemistry - A European Journal, 2004, 10, 1249-1255.	1.7	28
189	Furanyl nucleosides: synthesis and kinetics of their formation. Tetrahedron Letters, 2004, 45, 4515-4517.	0.7	4
190	A mechanistic investigation of (Me3Si)3SiH oxidation. Journal of Organometallic Chemistry, 2004, 689, 2912-2919.	0.8	41
191	Regioselective Cisâ^'Trans Isomerization of Arachidonic Double Bonds by Thiyl Radicals:  The Influence of Phospholipid Supramolecular Organization. Journal of the American Chemical Society, 2004, 126, 1063-1072.	6.6	111
192	The photochemistry of 8-bromo-2′-deoxyadenosine. A direct entry to cyclopurine lesions. Photochemical and Photobiological Sciences, 2004, 3, 1042-1046.	1.6	34
193	Excess electron transfer in G-quadruplex. Chemical Communications, 2004, , 1756-1757.	2.2	17
194	Synthesis and Biological Evaluation of Novel 1′â€Branched and Spironucleoside Analogues. Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 1565-1581.	0.4	11
195	Rate Constants for the β-Elimination of Tosyl Radical from a Variety of Substituted Carbon-Centered Radicals ChemInform, 2003, 34, no.	0.1	0
196	Model Studies of DNA C5â€~ Radicals. Selective Generation and Reactivity of 2â€~-Deoxyadenosin-5â€~-yl Radical. Journal of the American Chemical Society, 2003, 125, 3839-3848.	6.6	110
197	Rate Constants for the β-Elimination of Tosyl Radical from a Variety of Substituted Carbon-Centered Radicals. Journal of Organic Chemistry, 2003, 68, 3532-3537.	1.7	35
198	Kinetic and Product Studies of the Reaction of Triorganosilanes with Dimethyldioxirane. Organometallics, 2002, 21, 3506-3510.	1.1	15

#	Article	IF	CITATIONS
199	The Kinetics of Thiyl Radical-Induced Reactions of Monounsaturated Fatty Acid Esters. Journal of the American Chemical Society, 2002, 124, 12816-12823.	6.6	112
200	5-Endo-trig Radical Cyclizations:  Disfavored or Favored Processes?. Journal of the American Chemical Society, 2002, 124, 10765-10772.	6.6	74
201	Arachidonate geometrical isomers generated by thiyl radicals: the relationship with trans lipids detected in biological samples. Free Radical Biology and Medicine, 2002, 33, 1516-1526.	1.3	61
202	Geometrical isomerism of monounsaturated fatty acids: thiyl radical catalysis and influence of antioxidant vitamins. Free Radical Biology and Medicine, 2002, 33, 1681-1692.	1.3	43
203	Reactivity of Tris(trimethylsilyl)silane toward Diarylaminyl Radicals. Journal of Organic Chemistry, 2001, 66, 6317-6322.	1.7	6
204	Cisâ^'Trans Isomerization of Polyunsaturated Fatty Acid Residues in Phospholipids Catalyzed by Thiyl Radicals. Journal of the American Chemical Society, 2001, 123, 4459-4468.	6.6	113
205	Free radicals associated with DNA damage. Experimental Gerontology, 2001, 36, 1459-1471.	1.2	88
206	Radical-based reduction of phosphine sulfides and phosphine selenides by (Me3Si)3SiH. Tetrahedron Letters, 2000, 41, 9899-9902.	0.7	40
207	cisâ~'transIsomerization of Monounsaturated Fatty Acid Residues in Phospholipids by Thiyl Radicals. Journal of the American Chemical Society, 2000, 122, 4593-4601.	6.6	101
208	Rate constants for the reaction of cumylperoxyl radicals with group 14 hydrides. Perkin Transactions II RSC, 2000, , 577-582.	1.1	12
209	Fate of the 2â€~-Deoxyadenosin-5â€~-yl Radical under Anaerobic Conditions. Journal of the American Chemical Society, 2000, 122, 4225-4226.	6.6	61
210	Models of DNA C1†̃Radicals. Structural, Spectral, and Chemical Properties of the Thyminylmethyl Radical and the 2†̃-Deoxyuridin-1†̃-yl Radical. Journal of the American Chemical Society, 2000, 122, 9525-9533.	6.6	55
211	Chemical Radiation Studies of 8-Bromoguanosine in Aqueous Solutions. Journal of the American Chemical Society, 2000, 122, 1900-1907.	6.6	32
212	Ex-NovoandRevisumProcedures for the Preparation of C-1â€ ² Branched Nucleosides. Nucleosides & Nucleotides, 1999, 18, 637-639.	0.5	13
213	Mechanistic and Synthetic Aspects of the C-1′ Radicals in Modified Nucleosides. Nucleosides & Nucleotides, 1999, 18, 547-553.	O.5	О
214	The PdCl2/R3SiH system for the silylation of nucleosides. Tetrahedron Letters, 1999, 40, 1197-1200.	0.7	20
215	Anionically induced formation of anomeric spironucleosides from 1′-C-cyano-2′-deoxyuridine. Tetrahedron Letters, 1999, 40, 2837-2840.	0.7	11
216	C-1′ radicals in nucleosides. Il Farmaco, 1999, 54, 321-325.	0.9	4

#	Article	IF	CITATIONS
217	C-1′ Radical-Based Approaches for the Synthesis of Anomeric Spironucleosides. Chemistry - A European Journal, 1999, 5, 2866-2876.	1.7	57
218	Hydrogen Donor Abilities of the Group 14 Hydrides. Advances in Organometallic Chemistry, 1999, , 67-112.	0.5	88
219	Chemistry of Acyl Radicals. Chemical Reviews, 1999, 99, 1991-2070.	23.0	800
220	The thiyl radical-mediated isomerization of cis-monounsaturated fatty acid residues in phospholipids: a novel path of membrane damage?. Chemical Communications, 1999, , 407-408.	2.2	39
221	Rate constants for the reaction of cumylperoxyl radicals with Bu3SnH and (TMS)3SiH. Chemical Communications, 1999, , 405-406.	2.2	8
222	Kinetics of 2â€~-Deoxyuridin-1â€~-yl Radical Reactions. Journal of the American Chemical Society, 1999, 121, 2927-2928.	6.6	51
223	Hydrogen Donor Abilities of Germanium Hydrides. Organometallics, 1999, 18, 2395-2397.	1.1	35
224	Generation of C-1′ radicals through a β-(acyloxy)alkyl rearrangement in modified purine and pyrimidine nucleosides. Tetrahedron, 1998, 54, 573-592.	1.0	29
225	Catalytic Ferrier rearrangement of unsaturated nucleosides. Tetrahedron Letters, 1998, 39, 9637-9638.	0.7	13
226	The versatile behavior of the PdCl2/Et3SiH system. Conversion of alcohols to the corresponding halides and alkanes. Journal of Organometallic Chemistry, 1998, 554, 135-137.	0.8	41
227	Spectra and structure of the 2′-deoxyuridin-1′-yl radical. Tetrahedron Letters, 1998, 39, 3947-3950.	0.7	26
228	Fate of the C-1′ peroxyl radical in the 2′-deoxyuridine system. Chemical Communications, 1998, , 1249-125	0.2.2	36
229	Homolytic Reactivity of Group 14 Organometallic Hydrides toward Nitroxides. Journal of Organic Chemistry, 1998, 63, 1687-1693.	1.7	66
230	Autoxidation of Poly(hydrosilane)s. Organometallics, 1998, 17, 2169-2176.	1.1	53
231	One-Carbon Ring Expansion in Cyclopentanones as a Free-Radical Clock. Journal of Organic Chemistry, 1998, 63, 1327-1329.	1.7	43
232	Reactions of Oxide Radical Ion (·O-) with Pyrimidine and Purine Derivatives. Journal of Physical Chemistry A, 1998, 102, 6259-6265.	1.1	17
233	A new class of anomeric spironucleosides. Chemical Communications, 1997, , 2089-2090.	2.2	29
234	Addition Reactions of Tris(trimethylsilyl)germyl Radicals to Unsaturated Compounds. An EPR and Product Study. Journal of Organic Chemistry, 1997, 62, 8009-8014.	1.7	41

#	Article	IF	CITATIONS
235	Free radical chemistry associated with H(RSiH)nH. Journal of Organometallic Chemistry, 1997, 545-546, 475-481.	0.8	20
236	5â€exoâ€ŧrig Versus 6â€endoâ€ŧrig Cyclization of Alkâ€5â€enoyl Radicals: The Role of Oneâ€Carbon Ring Expans Chemistry - A European Journal, 1997, 3, 376-387.	sion. 1.7	48
237	Free Radical Carbonylation of 1,4-cis-Polybutadiene. Journal of the American Chemical Society, 1996, 118, 7223-7224.	6.6	16
238	PdCl2-Catalyzed Reduction of Organic Halides by Triethylsilane. Organometallics, 1996, 15, 1508-1510.	1.1	132
239	1,5-Radical Translocation Protocol for the Generation of C-1â€~ Radicals in Nucleosides. Synthesis of Spiro Nucleosides through a Rare 5-endo-trigCyclization. Journal of Organic Chemistry, 1996, 61, 1908-1909.	1.7	58
240	Synthesis of 2-functionalized allyl tris(trimethylsilyl)silanes. Tetrahedron Letters, 1996, 37, 6383-6386.	0.7	37
241	2-Functionalized allyl tris(trimethylsilyl)silanes as radical-based allylating agents. Tetrahedron Letters, 1996, 37, 6387-6390.	0.7	39
242	Tris(trimethylsilyl)silane as mediator in the radical-based allylation reactions of allyl and 2-functionalized allyl phenyl sulfones. Tetrahedron Letters, 1996, 37, 6391-6394.	0.7	37
243	Rate constants for the reaction of acyl radicals with Bu3SnH and (TMS)3SiH. Tetrahedron Letters, 1995, 36, 1299-1302.	0.7	24
244	5,10-dihydro-silanthrene as a reagent for the Barton-McCombie reaction. Tetrahedron Letters, 1995, 36, 3897-3900.	0.7	36
245	Energies of Activation. The Paradigm of Hydrogen Abstractions by Radicals. Journal of the American Chemical Society, 1995, 117, 10645-10654.	6.6	139
246	A Facile Entry to Secondary Cyclopropylcarbinols Further Developments in the Stereospecific Synthesis of (<i>E</i>)-Homoallylic Bromides. Synthetic Communications, 1995, 25, 3351-3356.	1.1	9
247	Rate Constants and Arrhenius Parameters for the Reaction of Acyl Radicals with Bu3SnH and (Me3Si)3SiH. Organometallics, 1995, 14, 2672-2676.	1.1	53
248	(Z)-(E) Interconversion of Olefins by the Addition-Elimination Sequence of the (TMS)3Si.bul. Radical. Journal of Organic Chemistry, 1995, 60, 3826-3831.	1.7	44
249	Tris(trimethylsilyl)germane as a Radical-Based Reducing Agent. Organometallics, 1995, 14, 5017-5018.	1.1	32
250	Structural and Chemical Properties of Silyl Radicals. Chemical Reviews, 1995, 95, 1229-1251.	23.0	393
251	Radical transformations of nucleosides with (Me3Si)3SiH. Generation of a C-1' radical through 1,2-migration of an acyloxy group. Tetrahedron Letters, 1995, 36, 6781-6784.	0.7	23
252	Sulfur–chlorine bond dissociation enthalpies in methane- and benzene-sulfonyl chlorides. Journal of the Chemical Society Perkin Transactions II, 1994, , 357-360.	0.9	11

#	Article	IF	CITATIONS
253	An unexpected stereochemical control of alkene formation by the choice of radical initiator. The reversible addition of (Me3Si)3Si· radicals to alkenes Tetrahedron Letters, 1993, 34, 5147-5150.	0.7	15
254	Progress of the Barton-McComble Methodology: From tin hydrides to Silanes. Research on Chemical Intermediates, 1993, 19, 755-775.	1.3	52
255	Organosilanes as radical-based reducing agents with low hydrogen donating abilities. Journal of the Chemical Society Perkin Transactions II, 1993, , 421.	0.9	21
256	A comment on the use of triethylsilane as a radical-based reducing agent. Journal of Organic Chemistry, 1993, 58, 249-251.	1.7	42
257	Organosilanes as radical-based reducing agents in synthesis. Accounts of Chemical Research, 1992, 25, 188-194.	7.6	591
258	A study on the reducing abilities of tris(alkylthio)silanes. Journal of Organic Chemistry, 1992, 57, 2427-2433.	1.7	46
259	Reactions of tris(trimethylsilyl)silyl radicals with nitro alkanes. EPR, kinetic, and product studies. Journal of Organic Chemistry, 1992, 57, 948-952.	1.7	27
260	Autoxidation of tris(trimethylsilyl)silane. Journal of Organic Chemistry, 1992, 57, 2207-2208.	1.7	44
261	The trimethylsilyl substituent effect on the reactivity of silanes. Structural correlations between silyl radicals and their parent silanes. Journal of Organic Chemistry, 1992, 57, 3405-3409.	1.7	59
262	The reaction of tris(trimethylsilyl)silane with acid chlorides. Tetrahedron Letters, 1992, 33, 1787-1790.	0.7	42
263	Tris(trimethylsilyl)silane: an efficient hydrosilylating agent of alkenes and alkynes. Journal of Organic Chemistry, 1992, 57, 3994-4000.	1.7	189
264	Electron impact studies of alkanesulfonyl chlorides. An investigation of the sulfur dioxide radical cation. International Journal of Mass Spectrometry and Ion Processes, 1992, 116, 115-125.	1.9	1
265	Homolytic Substitution Reaction at a Silicon Atom. Helvetica Chimica Acta, 1992, 75, 935-939.	1.0	46
266	Tris(trimethylsilyl)silane as a radical-based reducing agent in synthesis. Journal of Organic Chemistry, 1991, 56, 678-683.	1.7	245
267	Rate constants and Arrhenius parameters for the reactions of some carbon-centered radicals with tris(trimethylsilyl)silane. Journal of Organic Chemistry, 1991, 56, 6399-6403.	1.7	91
268	(Me3Si)3SiSH: a new radical-based reducing agent. Journal of Organometallic Chemistry, 1991, 408, C1-C4.	0.8	31
269	Addition of tris(trimethylsilyl)silyl radicals to the carbonyl group. Tetrahedron, 1990, 46, 3963-3972.	1.0	39
270	Alkyl isocyanides as precursors for the formation of carbon-carbon bonds. Tetrahedron Letters, 1990, 31, 6013-6016.	0.7	30

#	Article	IF	CITATIONS
271	33S and 17O NMR of compounds containing the S02 moiety. A generalization of the "chlorine effectâ€∙ Journal of Magnetic Resonance, 1990, 88, 277-283.	0.5	4
272	Tris(alkylthio)silanes as New Reducing Agents via Radicals. Synlett, 1990, 1990, 219-220.	1.0	31
273	MSX.alpha. study of absorption spectra of free radicals. Characterization of Rydberg and valence transitions in alkyl derivatives of Group 14 centered radicals. Journal of the American Chemical Society, 1990, 112, 2854-2859.	6.6	12
274	Sulphonylium ions in the gas phase. Organic Mass Spectrometry, 1989, 24, 455-460.	1.3	7
275	Tris(trimethylsilyl)silane as mediator in organic synthesis via radicals. Tetrahedron Letters, 1989, 30, 681-684.	0.7	147
276	Tris(trimethylsilyl)silane: A catalyst for radical mediated reduction reactions. Tetrahedron Letters, 1989, 30, 2733-2734.	0.7	64
277	Rate constants for the reactions of tris(trimethylsilyl)silyl radicals with organic halides. Journal of Organic Chemistry, 1989, 54, 2492-2494.	1.7	59
278	Amino- and alkoxysulfonyl radicals. Journal of Organic Chemistry, 1989, 54, 2734-2737.	1.7	19
279	Tris(trimethylsilyl)silane. A new reducing agent. Journal of Organic Chemistry, 1988, 53, 3641-3642.	1.7	211
280	Experimental and theoretical approaches to the optical absorption spectra of sulfonyl radicals. The Journal of Physical Chemistry, 1987, 91, 3747-3750.	2.9	41
281	Reduction of silicon-hydrogen bond strengths. Journal of the American Chemical Society, 1987, 109, 5267-5268.	6.6	171
282	Absolute rate constants for the reaction of triethylsilyl radicals with ring-substituted benzyl chlorides. Journal of Organic Chemistry, 1987, 52, 938-940.	1.7	19
283	Sulfur-33 NMR of cyclic sulfides, sulfoxides, and sulfones. Journal of Organic Chemistry, 1987, 52, 3857-3860.	1.7	24
284	Absolute rate constants for the reactions of .alphatoluenesulfonyl chloride with carbon-centered radicals. Journal of Organic Chemistry, 1986, 51, 2871-2873.	1.7	18
285	An investigation of structure and conformation of thiophene-2-sulphonyl radicals. Journal of the Chemical Society Perkin Transactions II, 1986, , 1179.	0.9	9
286	On the addition of silyl radicals to unsaturated carbonyl compounds. Regioselectivity of the attack and 1,3 carbon to oxygen silicon migration. Journal of the American Chemical Society, 1986, 108, 4993-4998.	6.6	27
287	33S and 17O NMR of compounds containing the SO2 moiety. The chlorine effect. Journal of Magnetic Resonance, 1986, 70, 204-212.	0.5	11
288	Structures and optical absorption spectra of some sulfuranyl radicals in solution. Journal of Organic Chemistry, 1985, 50, 2516-2518.	1.7	26

#	Article	IF	CITATIONS
289	Conformational studies by dynamic nuclear magnetic resonance. Part 26. Interconversion barriers between syn- and anti-conformers of isomeric thiophenecarbaldehydes. Journal of the Chemical Society Perkin Transactions II, 1984, , 819.	0.9	16
290	Absolute rate constants for hydrogen abstraction from aldehydes and conformational studies of the corresponding aromatic acyl radicals. Journal of the American Chemical Society, 1984, 106, 5252-5256.	6.6	52
291	Intramolecular and intermolecular reactions of alkenylsilyl radicals. Journal of the Chemical Society Perkin Transactions II, 1983, , 555.	0.9	22
292	A homoallyl radical rearrangement. Kinetics of the isomerization of the 2,2-dimethyl-3-buten-1-yl radical to the 1,1-dimethyl-3-buten-1-yl radical. Canadian Journal of Chemistry, 1983, 61, 1077-1081.	0.6	22
293	Reaction of bis(trifluoromethyl)aminoxyl with cyclopropane. Journal of Organic Chemistry, 1983, 48, 4104-4106.	1.7	9
294	Formation, decay, and spectral characterization of some alkyl- and aryl-substituted carbon-, silicon-, germanium-, and tin-centered radicals. Organometallics, 1983, 2, 1332-1335.	1.1	98
295	Absolute rate constants for the addition of triethylsilyl radicals to various unsaturated compounds. Journal of the American Chemical Society, 1983, 105, 3292-3296.	6.6	103
296	Kinetic studies on the formation and decay of some sulfonium radicals. Journal of Organic Chemistry, 1983, 48, 3588-3589.	1.7	35
297	Hindered rotation of the trifluoromethyl group in tert-butoxy trifluoromethyl nitroxide. The Journal of Physical Chemistry, 1982, 86, 4372-4375.	2.9	15
298	Absolute rate constants for the reaction of triethylsilyl radicals with organic halides. Journal of the American Chemical Society, 1982, 104, 5123-5127.	6.6	88
299	Absolute rate constants for the reactions of tert-butoxyl radicals and some ketone triplets with silanes. Organometallics, 1982, 1, 466-469.	1.1	61
300	Attempted spin trapping of tert-butylperoxyl radical by trifluoronitrosomethane. Journal of Organic Chemistry, 1982, 47, 4361-4362.	1.7	10
301	Absolute rate constants for the addition of triethylsilyl radicals to the carbonyl group. Journal of the American Chemical Society, 1982, 104, 5119-5123.	6.6	46
302	Absolute rate constants for some reactions involving triethylsilyl radicals in solution. Journal of the American Chemical Society, 1981, 103, 3231-3232.	6.6	29
303	"Spontaneous" formation of radicals from nitroso compounds. Inadvertent photolysis vs. molecule assisted homolysis. Journal of the American Chemical Society, 1981, 103, 4833-4837.	6.6	42
304	Rate constants and Arrhenius parameters for the reactions of primary, secondary, and tertiary alkyl radicals with tri-n-butyltin hydride. Journal of the American Chemical Society, 1981, 103, 7739-7742.	6.6	348
305	Configuration and conformation of alkoxyalkyl and hydroxyalkyl trifluoromethyl nitroxides. Anomeric effects and nitroxide conformations. Canadian Journal of Chemistry, 1981, 59, 1745-1752.	0.6	9
306	Infrared and Raman spectra of N,N-bis(trifluoromethyl)hydroxylamine and bis(trifluoromethyl) nitroxide. The Journal of Physical Chemistry, 1981, 85, 3093-3100.	2.9	14

#	Article	IF	CITATIONS
307	Bis(trifluoromethyl)aminyl and bis(trifluoromethyl) nitroxide. The Journal of Physical Chemistry, 1980, 84, 3597-3599.	2.9	25
308	Investigations of structure and conformation. Part 14. INDO and electron spin resonance studies of aliphatic sulphonyl radicals. Journal of the Chemical Society Perkin Transactions II, 1980, , 1429.	0.9	18
309	Electron spin resonance studies of radicals formed during the thermolysis and photolysis of sulphoxides and thiolsulphonates. Journal of the Chemical Society Perkin Transactions II, 1980, , 1141.	0.9	43
310	Investigations of structure and conformation. Part 12. The structure of aromatic sulphonyl radicals: an e.s.r. and INDO molecular orbital study. Journal of the Chemical Society Perkin Transactions II, 1979, , 770.	0.9	20
311	Electron spin resonance studies. Part 57. Alkane- and arene-sulphinate esters: an investigation of their photochemical decomposition and reactions with the t-butoxyl radical. Journal of the Chemical Society Perkin Transactions II, 1979, , 1084.	0.9	13
312	Addition of some 1,3-diaryltriazenes to tetracyanoethylene. Journal of Organic Chemistry, 1977, 42, 2611-2614.	1.7	7
313	Biomimetic Chemistry: Radical Reactions in Vesicle Suspensions. , 0, , .		5
314	Fatty Acids and Phospholipids. , 0, , 95-112.		5