Jin-feng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8438429/publications.pdf Version: 2024-02-01

394421 377865 1,266 41 19 34 h-index citations g-index papers 41 41 41 834 docs citations times ranked citing authors all docs

LIN-FENC L

#	Article	IF	CITATIONS
1	Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium alloy with various aging treatments. Transactions of Nonferrous Metals Society of China, 2008, 18, 755-762.	4.2	235
2	Corrosion mechanism associated with Mg2Si and Si particles in Al–Mg–Si alloys. Transactions of Nonferrous Metals Society of China, 2011, 21, 2559-2567.	4.2	166
3	Dynamic restoration mechanism and physically based constitutive model of 2050 Al–Li alloy during hot compression. Journal of Alloys and Compounds, 2015, 650, 75-85.	5.5	76
4	Microstructure and mechanical properties of Mg, Ag and Zn multi-microalloyed Al–(3.2–3.8)Cu–(1.0–1.4)Li alloys. Transactions of Nonferrous Metals Society of China, 2015, 25, 2103-2112.	4.2	59
5	Correlation of intergranular corrosion behaviour with microstructure in Al-Cu-Li alloy. Corrosion Science, 2018, 139, 215-226.	6.6	54
6	Influence of Pre-deformation on Aging Precipitation Behavior of Three Al–Cu–Li Alloys. Acta Metallurgica Sinica (English Letters), 2017, 30, 133-145.	2.9	46
7	Simulation on function mechanism of T1(Al2CuLi) precipitate in localized corrosion of Al-Cu-Li alloys. Transactions of Nonferrous Metals Society of China, 2006, 16, 1268-1273.	4.2	45
8	Characterization of Al3Zr precipitation via double-step homogenization and recrystallization behavior after subsequent deformation in 2195 Al-Li alloy. Materials Characterization, 2021, 182, 111549.	4.4	39
9	Corrosion behavior of 2195 and 1420 Al-Li alloys in neutral 3.5% NaCl solution under tensile stress. Transactions of Nonferrous Metals Society of China, 2006, 16, 1171-1177.	4.2	36
10	Electrodeposition and characterization of nano-structured black nickel thin films. Transactions of Nonferrous Metals Society of China, 2013, 23, 2300-2306.	4.2	34
11	Flow curve correction and processing map of 2050 Al–Li alloy. Transactions of Nonferrous Metals Society of China, 2018, 28, 404-414.	4.2	32
12	T1 precipitate bands and particle stimulated nucleation in 2195 Al-Cu-Li alloy during hot deformation. Journal of Alloys and Compounds, 2022, 909, 164716.	5.5	31
13	Structures and tensile properties of Sc-containing 1445 Al-Li alloy sheet. Journal of Alloys and Compounds, 2018, 747, 471-483.	5.5	28
14	Distribution and evolution of aging precipitates in Al-Cu-Li alloy with high Li concentration. Transactions of Nonferrous Metals Society of China, 2019, 29, 15-24.	4.2	28
15	Analysing the degree of sensitisation in 5xxx series aluminium alloys using artificial neural networks: A tool for alloy design. Corrosion Science, 2019, 150, 268-278.	6.6	28
16	Strength and structure variation of 2195 Al-Li alloy caused by different deformation processes of hot extrusion and cold-rolling. Transactions of Nonferrous Metals Society of China, 2020, 30, 835-849.	4.2	26
17	Evolution of aging precipitates in an Al–Li alloy with 1.5Âwt% Li concentration. Vacuum, 2020, 182, 109677.	3.5	25
18	Hot deformation behavior and microstructure evolution of 1460 Al–Li alloy. Transactions of Nonferrous Metals Society of China, 2015, 25, 3855-3864.	4.2	24

Jin-feng Li

#	Article	IF	CITATIONS
19	The effect of Ag element on the microstructure characteristic evolution of an Al–Cu–Li–Mg alloy. Journal of Materials Research and Technology, 2020, 9, 11121-11134.	5.8	24
20	Precipitate microstructures, mechanical properties and corrosion resistance of Al-1.0 wt%Cu-2.5 wt%Li alloys with different micro-alloyed elements addition. Materials Characterization, 2020, 167, 110528.	4.4	18
21	Mechanical Property and Intergranular Corrosion Sensitivity of Zn-Free and Zn-Microalloyed Al-2.7Cu-1.7Li-0.3Mg Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 5736-5748.	2.2	17
22	Microstructure evolution and mechanical properties of Al-Cu-Li alloys with different rolling schedules and subsequent artificial ageing heat treatment. Materials Characterization, 2020, 170, 110676.	4.4	17
23	Microstructures evolution and mechanical properties disparity in 2070 Al-Li alloy with minor Sc addition. Transactions of Nonferrous Metals Society of China, 2018, 28, 2151-2161.	4.2	16
24	The role of grain structure characteristics on the localised corrosion feature in the 1445 Al-Cu-Li alloy. Materials Characterization, 2019, 158, 109981.	4.4	16
25	Effects of microstructure on tensile properties of AA2050-T84 Al-Li alloy. Transactions of Nonferrous Metals Society of China, 2021, 31, 1189-1204.	4.2	14
26	Experimental quantification of "hardenability―of 2195 and 2050 Al-Li alloys by using cold-rolled sheets. Materials Characterization, 2018, 137, 180-188.	4.4	13
27	Grain structure and tensile property of Al-Li alloy sheet caused by different cold rolling reduction. Transactions of Nonferrous Metals Society of China, 2019, 29, 1569-1582.	4.2	13
28	Effects of Dynamic Precipitation and Processing Parameters on Dynamic Recrystallization Behavior of 2195 Al-Cu-Li Alloy during Hot Compression. Journal of Materials Engineering and Performance, 2022, 31, 2743-2760.	2.5	13
29	Variation of Aging Precipitates and Mechanical Strength of Al-Cu-Li Alloys Caused by Small Addition of Rare Earth Elements. Journal of Materials Engineering and Performance, 2017, 26, 4329-4339.	2.5	11
30	Effect of grain structure and precipitate on tensile properties and low-cycle fatigue behaviors of 2A55 Al-Cu-Li alloy. International Journal of Fatigue, 2022, 159, 106834.	5.7	11
31	Quench sensitivity and microstructure evolution of the 2060 Al-Cu-Li alloy with a low Mg content. Materials Characterization, 2021, 177, 111156.	4.4	10
32	Detailed investigation of quench sensitivity of 2050 Al-Cu-Li alloy by interrupted quenching method and novel end quenching method. Journal of Alloys and Compounds, 2021, 888, 161450.	5.5	10
33	Sluggish precipitation strengthening in Al–Li alloy with a high concentration of Mg. Journal of Materials Research and Technology, 2021, 11, 1806-1815.	5.8	9
34	Impact of Annealing Prior to Solution Treatment on Aging Precipitates and Intergranular Corrosion Behavior of Al-Cu-Li Alloy 2050. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 2471-2486.	2.2	8
35	The influence of Zn addition on microstructure of an Al-1.7 Cu-4.0 Li-0.4 Mg alloy. Journal of Materials Research and Technology, 2020, 9, 2423-2439.	5.8	8
36	Quantification of the Effect of Increased Preâ€Deformation on Microstructure and Mechanical Properties of 2A55 Al–Li Alloy. Advanced Engineering Materials, 2022, 24, .	3.5	7

Jin-feng Li

#	Article	IF	CITATIONS
37	Microstructural evolution and mechanical properties of a new Al–Cu–Li–X alloy at different solution temperatures. Rare Metals, 2021, 40, 635-642.	7.1	6
38	Microstructure Evolution and Mechanical Properties of the 2195 Al-Li Alloy via Different Annealing and Ramp Heating-Up Treatments. Metals, 2020, 10, 910.	2.3	5
39	Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al–xCu–yLi–Mg Alloys. Acta Metallurgica Sinica (English Letters), 2020, 33, 1201-1216.	2.9	5
40	Effect of different aging processes on the corrosion behavior of new Al–Cu–Li–Zr–Sc alloys. Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 2266-2277.	1.5	3
41	Sandwich Structure in Al-Cu(-Au) Alloys—Characterization by Atomic-Resolution HAADF-STEM and EDXS-STEM. Microscopy and Microanalysis, 2019, 25, 1700-1701.	0.4	0