Rosenberg J Romero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8438237/publications.pdf

Version: 2024-02-01

84 papers 1,476 citations

331642 21 h-index 35 g-index

90 all docs 90 docs citations

times ranked

90

827 citing authors

#	Article	IF	CITATIONS
1	Life cycle assessment of geothermal power generation technologies: An updated review. Applied Thermal Engineering, 2017, 114, 1119-1136.	6.0	150
2	Experimental thermodynamic evaluation for a single stage heat transformer prototype build with commercial PHEs. Applied Thermal Engineering, 2015, 75, 1262-1270.	6.0	124
3	A review of absorption heat transformers. Applied Thermal Engineering, 2015, 91, 654-670.	6.0	89
4	Increase of COP for heat transformer in water purification systems. Part I – Increasing heat source temperature. Applied Thermal Engineering, 2007, 27, 1043-1053.	6.0	55
5	Performance of Different Experimental Absorber Designs in Absorption Heat Pump Cycle Technologies: A Review. Energies, 2014, 7, 751-766.	3.1	44
6	Experimental assessment of a hydrophobic membrane-based desorber/condenser with H2O/LiBr mixture for absorption systems. Experimental Thermal and Fluid Science, 2017, 88, 145-159.	2.7	44
7	Thermodynamic analysis of monomethylamine–water solutions in a single-stage solar absorption refrigeration cycle at low generator temperatures. Solar Energy Materials and Solar Cells, 2001, 70, 287-300.	6.2	43
8	Optimal water purification using low grade waste heat in an absorption heat transformer. Desalination, 2008, 220, 506-513.	8.2	43
9	Exergy analysis of an experimental single-stage heat transformer operating with single water/lithium bromide and using additives (1-octanol and 2-ethyl-1-hexanol). Applied Thermal Engineering, 2011, 31, 3526-3532.	6.0	40
10	Portable water purification system integrated to a heat transformer. Desalination, 2004, 165, 385-391.	8.2	39
11	Theoretical and experimental comparison of the performance of a single-stage heat transformer operating with water/lithium bromide and water/Carrolâ,,¢. International Journal of Energy Research, 2002, 26, 747-762.	4.5	36
12	Life cycle assessment of a solar absorption air-conditioning system. Journal of Cleaner Production, 2019, 240, 118206.	9.3	36
13	A study of a bubble absorber using a plate heat exchanger with NH3–H2O, NH3–LiNO3 and NH3–NaSCN. Applied Thermal Engineering, 2011, 31, 1869-1876.	6.0	34
14	Simulation of an air conditioning absorption refrigeration system in a co-generation process combining a proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2007, 32, 3174-3182.	7.1	33
15	Theoretical comparison of performance of an absorption heat pump system for cooling and heating operating with an aqueous ternary hydroxide and water/lithium bromide. Applied Thermal Engineering, 2001, 21, 1137-1147.	6.0	31
16	Single-stage and advanced absorption heat transformers operating with lithium bromide mixtures used to increase solar pond's temperature. Solar Energy Materials and Solar Cells, 2001, 70, 321-333.	6.2	30
17	Experimental evaluation of a single-stage heat transformer operating with the water/Carrolâ,,¢ mixture. Energy, 1999, 24, 317-326.	8.8	29
18	Purification of seawater using absorption heat transformers with water-(LiBr+Lil+LiNO3+LiCl) and low temperature heat sources. Desalination, 2004, 166, 209-214.	8.2	29

#	Article	IF	CITATIONS
19	Evaluation of the thermodynamic effectiveness of a plate heat exchanger integrated into an experimental single stage heat transformer operating with Water/Carrol mixture. Experimental Thermal and Fluid Science, 2013, 51, 257-263.	2.7	28
20	Portable water purification system integrated to a heat transformer. Desalination, 2004, 165, 385-391.	8.2	26
21	Increase of COP for heat transformer in water purification systems. Part II – Without increasing heat source temperature. Applied Thermal Engineering, 2007, 27, 1054-1061.	6.0	26
22	Comparison of the theoretical performance of a solar air conditioning system operating with water/lithium bromide and an aqueous ternary hydroxide. Solar Energy Materials and Solar Cells, 2000, 63, 387-399.	6.2	25
23	Cogeneration Fuel Cell-Sorption Air Conditioning Systems. Green Energy and Technology, 2011, , .	0.6	22
24	Evaluation of a heat transformer powered by a solar pond. Solar Energy Materials and Solar Cells, 2000, 63, 413-422.	6.2	21
25	Performance evaluation of a monomethylamine–water solar absorption refrigeration system for milk cooling purposes. Applied Thermal Engineering, 2004, 24, 1103-1115.	6.0	21
26	Comparison of the modeling of a solar absorption system for simultaneous cooling and heating operating with an aqueous ternary hydroxide and with water/lithium bromide. Solar Energy Materials and Solar Cells, 2001, 70, 301-308.	6.2	20
27	A novel cogeneration system: A proton exchange membrane fuel cell coupled to a heat transformer. Applied Thermal Engineering, 2013, 50, 1530-1535.	6.0	20
28	Dynamic study of the thermal behaviour of solar thermochemical refrigerator: barium chloride-ammonia for ice production. Solar Energy Materials and Solar Cells, 2001, 70, 401-413.	6.2	19
29	Dynamic Simulation of an Absorption Cooling System with Different Working Mixtures. Energies, 2018, 11, 259.	3.1	19
30	Modelling of single-stage and advanced absorption heat transformers operating with the water/carrol mixture. Applied Thermal Engineering, 1997, 17, 1111-1122.	6.0	18
31	Theoretical comparison of single stage and advanced absorption heat transformers operating with water/lithium bromide and water/Carrol mixtures. International Journal of Energy Research, 1998, 22, 427-442.	4.5	18
32	Monomethylamine–water vapour absorption refrigeration system. Applied Thermal Engineering, 2005, 25, 867-876.	6.0	17
33	Working fluid concentration measurement in solar air conditioning systems. Solar Energy, 2006, 80, 177-181.	6.1	16
34	A neural network approach and thermodynamic model of waste energy recovery in a heat transformer in a water purification process. Desalination, 2009, 243, 273-285.	8.2	14
35	Optimization-heuristic of mechanical properties of acicular ferrite steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 721, 65-73.	5.6	14
36	Experimental assessment of double-absorption heat transformer operating with H2O/LiBr. Applied Thermal Engineering, 2018, 132, 432-440.	6.0	14

#	Article	IF	CITATIONS
37	Experimental evaluation of a membrane contactor unit used as a desorber/condenser with water/Carrol mixture for absorption heat transformer cycles. Experimental Thermal and Fluid Science, 2016, 76, 193-204.	2.7	13
38	Novel intermittent absorption cooling system based on membrane separation process. Applied Thermal Engineering, 2018, 136, 718-729.	6.0	13
39	Experimental assessment of an absorption heat transformer prototype at different temperature levels into generator and into evaporator operating with water/Carrol mixture. Experimental Thermal and Fluid Science, 2015, 60, 275-283.	2.7	12
40	Integration of the Experimental Results of a Parabolic Trough Collector (PTC) Solar Plant to an Absorption Air-Conditioning System. Applied Sciences (Switzerland), 2018, 8, 2163.	2.5	11
41	Thermodynamic design data for absorption heat transformers. Part seven: operating on an aqueous ternary hydroxide. Applied Thermal Engineering, 1998, 18, 147-156.	6.0	10
42	Hybrid Solar-Geothermal Energy Absorption Air-Conditioning System Operating with NaOH-H2Oâ€"Las Tres VÃrgenes (Baja California Sur), "La Reforma―Case. Energies, 2018, 11, 1268.	3.1	10
43	Analysis and characterization of an optical fiber for Carrol–Water liquid pair. Energy, 2011, 36, 3952-3958.	8.8	8
44	Corrosion behavior of AISI 316L stainless steel in a NaOH-H2O mixture. International Journal of Electrochemical Science, 2018, 13, 631-641.	1.3	8
45	Experimental heat transformer monitoring based on linear modelling and statistical control process. Applied Thermal Engineering, 2015, 75, 1271-1286.	6.0	7
46	Feasibility analysis of a hot water solar system coupled to an absorption heat transformer. Applied Thermal Engineering, 2017, 114, 1176-1185.	6.0	7
47	Feasibility Analysis of a Membrane Desorber Powered by Thermal Solar Energy for Absorption Cooling Systems. Applied Sciences (Switzerland), 2020, 10, 1110.	2.5	7
48	Temperature and concentration fields in a generator integrated to single stage heat transformer using Water/Carrol mixture. Journal of Thermal Science, 2014, 23, 564-571.	1.9	6
49	Optical Fiber Communications: Recent Contributions in Photonic Device Technology. Fiber and Integrated Optics, 2005, 24, 371-394.	2.5	5
50	Comparison of instrumental methods for in-line determination of LiBr concentration in solar absorption thermal systems. Solar Energy Materials and Solar Cells, 2006, 90, 2549-2555.	6.2	5
51	Predicted and experimental COP for heat transformer based on effectiveness process. Experimental Thermal and Fluid Science, 2017, 88, 490-503.	2.7	5
52	A Theoretical-Experimental Comparison of an Improved Ammonia-Water Bubble Absorber by Means of a Helical Static Mixer. Energies, 2018, 11, 56.	3.1	5
53	Thermodynamic Analysis of a Half-Effect Absorption Cooling System Powered by a Low-Enthalpy Geothermal Source. Applied Sciences (Switzerland), 2019, 9, 1220.	2.5	5
54	Analysis and Simulation of an Absorption Cooling System Using a Latent Heat Storage Tank and a Tempering Valve. Energies, 2021, 14, 1376.	3.1	5

#	Article	lF	Citations
55	Estimation of LiBr-H2O Using Multimode Interference (MMI). Journal of Applied Research and Technology, 2014, 12, 41-44.	0.9	4
56	Consequences of the National Energy Strategy in the Mexican Energy System: Analyzing Strategic Indicators with an Optimization Energy Model. Energies, 2018, 11, 2837.	3.1	4
57	Experimental barium chloride-ammonia cooling cycle study at low generation temperatures. Applied Thermal Engineering, 2018, 141, 751-761.	6.0	4
58	Experimental Performance of a Membrane Desorber Operating under Simulated Warm Weather Condensation Temperatures. Membranes, 2021, 11, 474.	3.0	4
59	State of the Art of Sorption Refrigeration Systems. Green Energy and Technology, 2011, , 55-73.	0.6	3
60	On the Dimensionless Absorption Heat Pump Widespread. Journal of Advanced Thermal Science Research, 0, 8, 10-20.	0.4	3
61	Energy Model for Long-Term Scenarios in Power Sector under Energy Transition Laws. Processes, 2019, 7, 674.	2.8	2
62	Numerical Analysis of a Latent Heat Storage Using Plate Heat Exchanger for Absorption System Conditions. Processes, 2022, 10, 815.	2.8	2
63	Temperature sensing based on optical transmission in a LiBr heat pump. Materials Research Society Symposia Proceedings, 2005, 888, 1.	0.1	1
64	Preliminary Instrumentation and Object Oriented Design for Working Fluid Control in an Absorption Heat Pump Using Water / Carrol., 2006,,.		1
65	Energy Evaluation of the Use of an Absorption Heat Pump in Water Distillation Process. , 0, , .		1
66	New Concentration Correlations of NaOH Aqueous Solutions for a Thermodynamic Process. Journal of Chemical & Engineering Data, 2019, 64, 5302-5311.	1.9	1
67	Using CFD and PIV to investigate rotating cage-related hydrodynamics for CO2 corrosion studies analyzing 2-, 4- and 8-coupons setups. Anti-Corrosion Methods and Materials, 2019, 66, 802-811.	1.5	1
68	Laboratory instrumentation and object oriented design for working fluid control in an "absorption heat pump―using Water / Carrol. , 2007, , 429-432.		1
69	Instantaneous Determination of Heat Transfer Coefficients in a Steam Generator for an Alternative Energy Upgrade System. The Open Renewable Energy Journal, 2009, 2, 116-123.	0.7	1
70	Optical Determination of the Effects by Thermal Treatment (TT) in Honey of <i>Apis mellifera</i> Bees. Journal of Agricultural Chemistry and Environment, 2020, 09, 37-47.	0.5	1
71	Interferometer Type Pressure Microsensor. Materials Research Society Symposia Proceedings, 2005, 888, 1.	0.1	0
72	Solitons propagation in non-homogeneous periodic media by tandem arrangement of nonlinear materials. , 2006, , .		0

#	Article	IF	CITATIONS
73	Mathematical Model and Simulation of a Plate Heat Exchanger Operating as Steam Generator. , 2008, , 460-464.		0
74	Profitability Assessment of the Cogeneration System. Green Energy and Technology, 2011, , 133-154.	0.6	0
75	Air Conditioning Based on Hydroxides with Solar Driving for Low GHG Emissions. Green Energy and Technology, 2016, , 285-294.	0.6	O
76	Detection of the Concentration of LiBr in Cooling Systems by Means of Optical Transmitancia. , 2006, , .		0
77	Sorption Refrigeration Systems. Green Energy and Technology, 2011, , 75-102.	0.6	0
78	Selected Fuel Cells for Cogeneration CHP Processes. Green Energy and Technology, 2011, , 37-53.	0.6	0
79	Energy and Cogeneration. Green Energy and Technology, 2011, , 1-24.	0.6	O
80	Potential Applications in Demonstration Projects. Green Energy and Technology, 2011, , 121-131.	0.6	0
81	Optimal design criterion for Heat Transformer operating with Water Carrol. , 2016, , .		O
82	Adsorbentes de origen vegetal y su aplicaci \tilde{A}^3 n en la remoci \tilde{A}^3 n amigable de colorantes presentes en agua. Inventio, 2019, 15, .	0.0	0
83	Adsorbentes de origen vegetal y su aplicaci \tilde{A}^3 n en la remoci \tilde{A}^3 n amigable de colorantes presentes en agua. Inventio, 2020, 15, .	0.0	0
84	Parametric Identification Method for an Absorption Air Conditioning Parabolic Trough Collector Solar Plant. International Journal of Basic and Applied Sciences, 2020, 9, 01.	0.2	0