
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8438141/publications.pdf Version: 2024-02-01

7UENLI

#	Article	IF	CITATIONS
1	Hollow Carbon Nanofibers Filled with MnO ₂ Nanosheets as Efficient Sulfur Hosts for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2015, 54, 12886-12890.	13.8	765
2	MOFâ€Derived Porous ZnO/ZnFe ₂ O ₄ /C Octahedra with Hollow Interiors for Highâ€Rate Lithiumâ€Ion Batteries. Advanced Materials, 2014, 26, 6622-6628.	21.0	703
3	Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries. Energy and Environmental Science, 2016, 9, 3061-3070.	30.8	598
4	A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium–sulfur batteries. Nature Communications, 2016, 7, 13065.	12.8	590
5	A Highly Ordered Meso@Microporous Carbon-Supported Sulfur@Smaller Sulfur Core–Shell Structured Cathode for Li–S Batteries. ACS Nano, 2014, 8, 9295-9303.	14.6	552
6	Doubleâ€ S helled Nanocages with Cobalt Hydroxide Inner Shell and Layered Double Hydroxides Outer Shell as Highâ€Efficiency Polysulfide Mediator for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2016, 55, 3982-3986.	13.8	505
7	Pie-like electrode design for high-energy density lithium–sulfur batteries. Nature Communications, 2015, 6, 8850.	12.8	453
8	Insight into the Electrode Mechanism in Lithiumâ€ £ ulfur Batteries with Ordered Microporous Carbon Confined Sulfur as the Cathode. Advanced Energy Materials, 2014, 4, 1301473.	19.5	418
9	Status and prospects in sulfur–carbon composites as cathode materials for rechargeable lithium–sulfur batteries. Carbon, 2015, 92, 41-63.	10.3	371
10	Hierarchical MoS ₂ tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries. Science Advances, 2016, 2, e1600021.	10.3	362
11	Nickel–Iron Layered Double Hydroxide Hollow Polyhedrons as a Superior Sulfur Host for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2018, 57, 10944-10948.	13.8	269
12	A Compact Nanoconfined Sulfur Cathode for High-Performance Lithium-Sulfur Batteries. Joule, 2017, 1, 576-587.	24.0	255
13	Sodium storage in Na-rich Na x FeFe(CN) 6 nanocubes. Nano Energy, 2015, 12, 386-393.	16.0	253
14	General Formation of M _{<i>x</i>} Co _{3â^'<i>x</i>} S ₄ (M=Ni, Mn, Zn) Hollow Tubular Structures for Hybrid Supercapacitors. Angewandte Chemie - International Edition, 2015, 54, 10521-10524.	13.8	247
15	Ultrathin, Flexible Polymer Electrolyte for Costâ€Effective Fabrication of Allâ€Solidâ€State Lithium Metal Batteries. Advanced Energy Materials, 2019, 9, 1902767.	19.5	239
16	Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy and Environmental Science, 2021, 14, 12-36.	30.8	236
17	Confined selenium within porous carbon nanospheres as cathode for advanced Li–Se batteries. Nano Energy, 2014, 9, 229-236.	16.0	233
18	Metallic 1T MoS ₂ nanosheet arrays vertically grown on activated carbon fiber cloth for enhanced Li-ion storage performance. Journal of Materials Chemistry A, 2017, 5, 14061-14069.	10.3	232

#	Article	IF	CITATIONS
19	A modular strategy for decorating isolated cobalt atoms into multichannel carbon matrix for electrocatalytic oxygen reduction. Energy and Environmental Science, 2018, 11, 1980-1984.	30.8	225
20	A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances. Science Advances, 2018, 4, eaat1687.	10.3	225
21	Flexible and Binderâ€Free Electrodes of Sb/rGO and Na ₃ V ₂ (PO ₄) ₃ /rGO Nanocomposites for Sodiumâ€lon Batteries. Small, 2015, 11, 3822-3829.	10.0	184
22	A flame-retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature. Energy and Environmental Science, 2021, 14, 3510-3521.	30.8	156
23	Engineering stable electrode-separator interfaces with ultrathin conductive polymer layer for high-energy-density Li-S batteries. Energy Storage Materials, 2019, 23, 261-268.	18.0	149
24	Necklace‣ike Structures Composed of Fe ₃ N@C Yolk–Shell Particles as an Advanced Anode for Sodium″on Batteries. Advanced Materials, 2018, 30, e1800525.	21.0	145
25	High-performance aqueous sodium-ion batteries with K0.27MnO2 cathode and their sodium storage mechanism. Nano Energy, 2014, 5, 97-104.	16.0	138
26	Coral-like α-MnS composites with N-doped carbon as anode materials for high-performance lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 24026.	6.7	134
27	SnO ₂ as a high-efficiency polysulfide trap in lithium–sulfur batteries. Nanoscale, 2016, 8, 13638-13645.	5.6	131
28	A Freestanding Selenium Disulfide Cathode Based on Cobalt Disulfideâ€Decorated Multichannel Carbon Fibers with Enhanced Lithium Storage Performance. Angewandte Chemie - International Edition, 2017, 56, 14107-14112.	13.8	113
29	An Improved Li–SeS ₂ Battery with High Energy Density and Long Cycle Life. Advanced Energy Materials, 2017, 7, 1700281.	19.5	111
30	Mesoporous Carbon@Titanium Nitride Hollow Spheres as an Efficient SeS ₂ Host for Advanced Li–SeS ₂ Batteries. Angewandte Chemie - International Edition, 2017, 56, 16003-16007.	13.8	111
31	Polycationic Polymer Layer for Air‣table and Dendriteâ€Free Li Metal Anodes in Carbonate Electrolytes. Advanced Materials, 2021, 33, e2007428.	21.0	94
32	High-performance lithium–selenium batteries promoted by heteroatom-doped microporous carbon. Journal of Materials Chemistry A, 2015, 3, 3059-3065.	10.3	90
33	Nonporous MOF-derived dopant-free mesoporous carbon as an efficient metal-free electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 9370-9374.	10.3	85
34	A dual coaxial nanocable sulfur composite for high-rate lithium–sulfur batteries. Nanoscale, 2014, 6, 1653-1660.	5.6	82
35	Rationally Design a Sulfur Cathode with Solidâ€Phase Conversion Mechanism for High Cycle‣table Li–S Batteries. Advanced Energy Materials, 2021, 11, 2003690.	19.5	82
36	Ultrafine nano-sulfur particles anchored on in situ exfoliated graphene for lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 9412-9417.	10.3	80

#	Article	IF	CITATIONS
37	Elevated Lithium Ion Regulation by a "Natural Silk―Modified Separator for Highâ€Performance Lithium Metal Anode. Advanced Functional Materials, 2021, 31, 2100537.	14.9	79
38	Facile fabrication of CuO nanosheets on Cu substrate as anode materials for electrochemical energy storage. Journal of Alloys and Compounds, 2014, 586, 208-215.	5.5	74
39	High performance lithium-sulfur batteries with a facile and effective dual functional separator. Electrochimica Acta, 2016, 200, 197-203.	5.2	71
40	Li2S-based anode-free full batteries with modified Cu current collector. Energy Storage Materials, 2020, 30, 179-186.	18.0	71
41	Nanostructured alkali cation incorporated δ-MnO ₂ cathode materials for aqueous sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 7780-7785.	10.3	70
42	Electrolyte with boron nitride nanosheets as leveling agent towards dendrite-free lithium metal anodes. Nano Energy, 2020, 72, 104725.	16.0	63
43	Doubleâ€Shelled Nanocages with Cobalt Hydroxide Inner Shell and Layered Double Hydroxides Outer Shell as Highâ€Efficiency Polysulfide Mediator for Lithium–Sulfur Batteries. Angewandte Chemie, 2016, 128, 4050-4054.	2.0	62
44	High sulfur-containing organosulfur polymer composite cathode embedded by monoclinic S for lithium sulfur batteries. Energy Storage Materials, 2020, 26, 570-576.	18.0	62
45	Recent progress of asymmetric solid-state electrolytes for lithium/sodium-metal batteries. EnergyChem, 2021, 3, 100058.	19.1	47
46	Improving the electrochemical performance of a lithium–sulfur battery with a conductive polymer-coated sulfur cathode. RSC Advances, 2015, 5, 44160-44164.	3.6	46
47	Green and scalable synthesis of porous carbon nanosheet-assembled hierarchical architectures for robust capacitive energy harvesting. Carbon, 2019, 152, 537-544.	10.3	45
48	Sowing Silver Seeds within Patterned Ditches for Dendriteâ€Free Lithium Metal Batteries. Advanced Science, 2021, 8, e2100684.	11.2	42
49	Molecular evolution of the HD-ZIP I gene family in legume genomes. Gene, 2014, 533, 218-228.	2.2	41
50	Oxygen plasma modified separator for lithium sulfur battery. RSC Advances, 2015, 5, 79473-79478.	3.6	39
51	Ultrathin Conductive Interlayer with Highâ€Density Antisite Defects for Advanced Lithium–Sulfur Batteries. Advanced Functional Materials, 2021, 31, 2001201.	14.9	38
52	Improving Na/Na ₃ Zr ₂ Si ₂ PO ₁₂ Interface via SnO <i>_x</i> /Sn Film for Highâ€Performance Solid‣tate Sodium Metal Batteries. Small Methods, 2021, 5, e2100339.	8.6	38
53	Direct optical fiber monitor on stress evolution of the sulfur-based cathodes for lithium–sulfur batteries. Energy and Environmental Science, 2022, 15, 2029-2038.	30.8	38
54	Air-stable means more: designing air-defendable lithium metals for safe and stable batteries. Materials Horizons, 2020, 7, 2619-2634.	12.2	37

#	Article	IF	CITATIONS
55	Realizing an Applicable "Solid → Solid―Cathode Process via a Transplantable Solid Electrolyte Interface for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 29830-29837.	8.0	36
56	Stable Lithium Metal Anode Enabled by 3D Soft Host. ACS Applied Materials & Interfaces, 2020, 12, 28337-28344.	8.0	36
57	Nickel–Iron Layered Double Hydroxide Hollow Polyhedrons as a Superior Sulfur Host for Lithium–Sulfur Batteries. Angewandte Chemie, 2018, 130, 11110-11114.	2.0	35
58	Advanced Characterization Techniques for Interface in Allâ€Solidâ€State Batteries. Small Methods, 2020, 4, 2000111.	8.6	35
59	Composite Lithium Metal Anodes with Lithiophilic and Lowâ€Tortuosity Scaffold Enabling Ultrahigh Currents and Capacities in Carbonate Electrolytes. Advanced Functional Materials, 2021, 31, 2009961.	14.9	32
60	Insight into the Fading Mechanism of the Solid onversion Sulfur Cathodes and Designing Long Cycle Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, 2102774.	19.5	31
61	Low-cost fumed silicon dioxide uniform Li+ flux for lean-electrolyte and anode-free Li/S battery. Energy Storage Materials, 2022, 48, 366-374.	18.0	30
62	Advanced Li ₂ S/Si Full Battery Enabled by TiN Polysulfide Immobilizer. Small, 2019, 15, e1902377.	10.0	29
63	Construct an Ultrathin Bismuth Buffer for Stable Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 12793-12800.	8.0	29
64	High-performance lithium-selenium battery with Se/microporous carbon composite cathode and carbonate-based electrolyte. Science China Materials, 2015, 58, 91-97.	6.3	28
65	Methods and Cost Estimation for the Synthesis of Nanosized Lithium Sulfide. Small Structures, 2021, 2, 2000059.	12.0	27
66	A label-free amplified fluorescence DNA detection based on isothermal circular strand-displacement polymerization reaction and graphene oxide. Analyst, The, 2013, 138, 3616.	3.5	26
67	Recent Advances in Cathode Materials for Roomâ€īemperature Sodiumâ^'Sulfur Batteries. ChemPhysChem, 2019, 20, 3164-3176.	2.1	26
68	Facile one-step vulcanization of copper foil towards stable Li metal anode. Science China Materials, 2020, 63, 1663-1671.	6.3	24
69	A label free exonuclease III-aided fluorescence assay for adenosine triphosphate based on graphene oxide and ligation reaction. New Journal of Chemistry, 2013, 37, 927.	2.8	23
70	An oxygen vacancy-rich ZnO layer on garnet electrolyte enables dendrite-free solid state lithium metal batteries. Chemical Engineering Journal, 2022, 433, 133665.	12.7	23
71	A Freestanding Selenium Disulfide Cathode Based on Cobalt Disulfideâ€Decorated Multichannel Carbon Fibers with Enhanced Lithium Storage Performance. Angewandte Chemie, 2017, 129, 14295-14300.	2.0	21
72	Solid/Quasiâ€Solid Phase Conversion of Sulfur in Lithium–Sulfur Battery. Small, 2022, 18, e2106970.	10.0	21

#	Article	IF	CITATIONS
73	Mesoporous Carbon@Titanium Nitride Hollow Spheres as an Efficient SeS ₂ Host for Advanced Li–SeS ₂ Batteries. Angewandte Chemie, 2017, 129, 16219-16223.	2.0	19
74	Highly Reversible and Anticorrosive Zn Anode Enabled by a Ag Nanowires Layer. ACS Applied Materials & Interfaces, 2022, 14, 9097-9105.	8.0	19
75	In Situ Constructing Coordination Compounds Interphase to Stabilize Zn Metal Anode for Highâ€Performance Aqueous Zn–SeS ₂ Batteries. Small, 2022, 18, e2200567.	10.0	19
76	Enabling Seleniumâ€Rich Se <i>_x</i> S <i>_y</i> Cathodes to Work in Carbonateâ€Based Electrolytes. Advanced Energy Materials, 2022, 12, 2102832.	19.5	16
77	Engineering a High-Voltage Durable Cathode/Electrolyte Interface for All-Solid-State Lithium Metal Batteries via <i>In Situ</i> Electropolymerization. ACS Applied Materials & Interfaces, 2022, 14, 21018-21027.	8.0	15
78	A separator modified by high efficiency oxygen plasma for lithium ion batteries with superior performance. RSC Advances, 2015, 5, 92995-93001.	3.6	14
79	Porous ZnO/Co ₃ O ₄ /N-doped carbon nanocages synthesized <i>via</i> pyrolysis of complex metal–organic framework (MOF) hybrids as an advanced lithium-ion battery anode. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 969-978.	0.5	13
80	Reactivating Dead Li by Shuttle Effect for High-Performance Anode-Free Li Metal Batteries. Journal of the Electrochemical Society, 2021, 168, 120535.	2.9	13
81	Molecular characterisation of Apolipophorin-III gene in Samia cynthia ricini and its roles in response to bacterial infection. Journal of Invertebrate Pathology, 2018, 159, 61-70.	3.2	12
82	Comparative transcriptome analysis reveals significant metabolic alterations in eri-silkworm (Samia) Tj ETQq0 0 C) rgBT /Ove 2.5	erlock 10 Tf 5
83	Constructing Stable Anodic Interphase for Quasi-Solid-State Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 39335-39341.	8.0	12
84	In situ protection of a sulfur cathode and a lithium anode via adopting a fluorinated electrolyte for stable lithium-sulfur batteries. Science China Materials, 2021, 64, 2127-2138.	6.3	12
85	Molecular Characterization and Functional Analysis of a Ferritin Heavy Chain Subunit from the Eri-Silkworm, Samia cynthia ricini. International Journal of Molecular Sciences, 2017, 18, 2126.	4.1	11
86	Stable Room-Temperature Sodium–Sulfur Batteries in Ether-Based Electrolytes Enabled by the Fluoroethylene Carbonate Additive. ACS Applied Materials & Interfaces, 2022, 14, 6658-6666.	8.0	11
87	Improving the cycling stability of lithium metal anodes using Cu3N-modified Cu foil as a current collector. Science China Materials, 2022, 65, 2385-2392.	6.3	11
88	Molecular Characterization of Two Mitogen-Activated Protein Kinases: p38 MAP Kinase and Ribosomal S6 Kinase From Bombyx mori (Lepidoptera: Bombycidae), and Insight Into Their Roles in Response to BmNPV Infection. Journal of Insect Science, 2019, 19, .	1.5	10

89Novel double-cathode configuration to improve the cycling stability of lithiumâ€"sulfur battery. RSC Advances, 2015, 5, 14196-14201.3.69	
---	--

90Lithiumâ€Metal Batteries: Polycationic Polymer Layer for Airâ€Stable and Dendriteâ€Free Li Metal Anodes in
Carbonate Electrolytes (Adv. Mater. 12/2021). Advanced Materials, 2021, 33, 2170087.21.02

IF # ARTICLE CITATIONS Optimizing the operation strategy of solid-conversion sulfur cathodes for achieving high total capacity contribution throughout the lifespan. Journal of Power Sources, 2022, 543, 231837. Frontispiece: Hollow Carbon Nanofibers Filled with MnO₂ Nanosheets as Efficient Sulfur 92 13.8 1 Hosts for Lithiumâ€"Sulfur Batteries. Angewandte Chemie - International Edition, 2015, 54, . All-solid-state batteries., 2022, , 343-361. é",çj«ç"µæ±ç»¼å•̂性èf½ååŒæå‡ç–ç•¥. Chinese Science Bulletin, 2022, , . 94 0.7 1 Frontispiz: Hollow Carbon Nanofibers Filled with MnO2Nanosheets as Efficient Sulfur Hosts for Lithium-Sulfur Batteries. Angewandte Chemie, 2015, 127, n/a-n/a. Ultrathin Conductive Interlayers: Ultrathin Conductive Interlayer with Highâ€Density Antisite Defects for Advanced Lithium–Sulfur Batteries (Adv. Funct. Mater. 2/2021). Advanced Functional Materials, 96 14.9 0 2021, 31, 2170012. Porous carbon–sulfur composite cathodes. , 2022, , 207-224.

ZHEN LI