Nasim Amiralian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8437531/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trends in the production of cellulose nanofibers from non-wood sources. Cellulose, 2020, 27, 575-593.	2.4	151
2	Nanocellulose from Spinifex as an Effective Adsorbent to Remove Cadmium(II) from Water. ACS Sustainable Chemistry and Engineering, 2018, 6, 3279-3290.	3.2	138
3	Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods. Cellulose, 2015, 22, 2483-2498.	2.4	81
4	Magnetic nanocellulose: A potential material for removal of dye from water. Journal of Hazardous Materials, 2020, 394, 122571.	6.5	75
5	Structural characterization and mechanical properties of electrospun silk fibroin nanofiber mats. Polymer Science - Series A, 2010, 52, 407-412.	0.4	66
6	Easily deconstructed, high aspect ratio cellulose nanofibres from Triodia pungens; an abundant grass of Australia's arid zone. RSC Advances, 2015, 5, 32124-32132.	1.7	60
7	Reinforcement of natural rubber latex using lignocellulosic nanofibers isolated from spinifex grass. Nanoscale, 2017, 9, 9510-9519.	2.8	59
8	Ultra-stable sodium ion storage of biomass porous carbon derived from sugarcane. Chemical Engineering Journal, 2022, 445, 136344.	6.6	56
9	Scalable processing of thermoplastic polyurethane nanocomposites toughened with nanocellulose. Chemical Engineering Journal, 2016, 302, 406-416.	6.6	54
10	Effects of some electrospinning parameters on morphology of natural silkâ€based nanofibers. Journal of Applied Polymer Science, 2009, 113, 226-234.	1.3	52
11	Spinifex nanocellulose derived hard carbon anodes for high-performance sodium-ion batteries. Sustainable Energy and Fuels, 2017, 1, 1090-1097.	2.5	48
12	Electrospinning of silk nanofibers. I. An investigation of nanofiber morphology and process optimization using response surface methodology. Fibers and Polymers, 2009, 10, 167-176.	1.1	39
13	High aspect ratio nanocellulose from an extremophile spinifex grass by controlled acid hydrolysis. Cellulose, 2017, 24, 3753-3766.	2.4	37
14	Red-mud based porous nanocatalysts for valorisation of municipal solid waste. Journal of Hazardous Materials, 2020, 396, 122711.	6.5	35
15	Cellulose Nanofibers as Rheology Modifiers and Enhancers of Carbonization Efficiency in Polyacrylonitrile. ACS Sustainable Chemistry and Engineering, 2017, 5, 3296-3304.	3.2	32
16	Microalgal nanocellulose – opportunities for a circular bioeconomy. Trends in Plant Science, 2021, 26, 924-939.	4.3	25
17	Facile Tuning of the Surface Energy of Cellulose Nanofibers for Nanocomposite Reinforcement. ACS Omega, 2018, 3, 15933-15942.	1.6	23
18	Evaluation of properties and specific energy consumption of spinifex-derived lignocellulose fibers produced using different mechanical processes. Cellulose, 2019, 26, 6555-6569.	2.4	21

NASIM AMIRALIAN

#	Article	IF	CITATIONS
19	Toughening of natural rubber nanocomposites by the incorporation of nanoscale lignin combined with an industrially relevant leaching process. Industrial Crops and Products, 2021, 159, 113063.	2.5	20
20	Tailored nanocellulose-grafted polymer brush applications. Journal of Materials Chemistry A, 2021, 9, 17173-17188.	5.2	18
21	Influence of Different Nanocellulose Additives on Processing and Performance of PAN-Based Carbon Fibers. ACS Omega, 2019, 4, 9720-9730.	1.6	17
22	Mechanical properties of polyamide 11 reinforced with cellulose nanofibres from Triodia pungens. Cellulose, 2018, 25, 2367-2380.	2.4	14
23	Optimisation of resin extraction from an Australian arid grass â€~Triodia pungens' and its preliminary evaluation as an anti-termite timber coating. Industrial Crops and Products, 2014, 59, 241-247.	2.5	12
24	κ-Carrageenan Gel Modified Mesoporous Gold Chronocoulometric Sensor for Ultrasensitive Detection of MicroRNA. Bulletin of the Chemical Society of Japan, 2022, 95, 198-207.	2.0	10
25	Effects of the growth environment on the yield and material properties of nanocellulose derived from the Australian desert grass Triodia. Industrial Crops and Products, 2018, 126, 238-249.	2.5	7
26	Dip-and-Drag Lateral Force Spectroscopy for Measuring Adhesive Forces between Nanofibers. Langmuir, 2016, 32, 13340-13348.	1.6	5
27	Nanotechnology and the Dreamtime knowledge of spinifex grass. , 2017, , 181-198.		3
28	Grafting from cellulose nanofibres with naturally-derived oil to reduce water absorption. Polymer, 2021, 222, 123659.	1.8	2
29	Evaluation of reinforcement on the mechanical behavior of partially bonded fiber/matrix interface. Composite Interfaces, 2007, 14, 647-668.	1.3	1