Akram Alhussein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8436892/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of silicon and addition elements on the mechanical behavior of ferritic ductile cast iron. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 605, 222-228.	5.6	51
2	Effect of annealing treatment on the microstructure, mechanical and tribological properties of chromium carbonitride coatings. Surface and Coatings Technology, 2019, 359, 403-413.	4.8	28
3	Relationship between structure, surface topography and tribo-mechanical behavior of Ti-N thin films elaborated at different N2 flow rates. Thin Solid Films, 2021, 724, 138598.	1.8	24
4	Structural, tribological and antibacterial properties of $(\hat{l} \pm + \hat{l}^2)$ based ti-alloys for biomedical applications. Journal of Materials Research and Technology, 2020, 9, 14061-14074.	5.8	22
5	Investigating the effect of nitrogen on the structural and tribo-mechanical behavior of vanadium nitride thin films deposited using R.F. magnetron sputtering. Journal of Materials Science, 2021, 56, 17319-17336.	3.7	21
6	Influence of film thickness and Ar N2 plasma gas on the structure and performance of sputtered vanadium nitride coatings. Surface and Coatings Technology, 2019, 378, 124948.	4.8	20
7	Evolution of microstructure, mechanical and tribological properties of vanadium carbonitride coatings sputtered at different nitrogen partial pressures. Surface and Coatings Technology, 2019, 374, 531-540.	4.8	20
8	Gum Metal thin films obtained by magnetron sputtering of a Ti-Nb-Zr-Ta target. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 673, 492-502.	5.6	19
9	Plasma investigations and deposition of Me-DLC (Me = Al, Ti or Nb) obtained by a magnetron sputtering-RFPECVD hybrid process. Surface and Coatings Technology, 2018, 354, 351-359.	4.8	19
10	Effect of gas tungsten arc welding parameters on the corrosion resistance and the residual stress of heat affected zone. Engineering Failure Analysis, 2020, 107, 104200.	4.0	17
11	Influence of sandblasting and hydrogen on tensile and fatigue properties of pipeline API 5L X52 steel. International Journal of Hydrogen Energy, 2011, 36, 2291-2301.	7.1	15
12	Beneficial effect of Cu on Ti-Nb-Ta-Zr sputtered uniform/adhesive gum films accelerating bacterial inactivation under indoor visible light. Colloids and Surfaces B: Biointerfaces, 2017, 152, 152-158.	5.0	14
13	Sputtered Gum metal thin films showing bacterial inactivation and biocompatibility. Colloids and Surfaces B: Biointerfaces, 2016, 146, 687-691.	5.0	12
14	On the determination of Young's modulus of thin films with impulse excitation technique. Journal of Materials Research, 2017, 32, 497-511.	2.6	11
15	Experimental investigation of structural, wetting, mechanical and Tribological properties of TiZrN thin films deposited by magnetron sputtering. Surfaces and Interfaces, 2021, 27, 101519.	3.0	11
16	Static, dynamic and fatigue characteristics of the pipeline API 5L X52 steel after sandblasting. Engineering Failure Analysis, 2013, 27, 1-15.	4.0	10
17	Determination of single-crystal elasticity constants of the beta phase in a multiphase tungsten thin film using impulse excitation technique, X-ray diffraction and micro-mechanical modeling. Acta Materialia, 2019, 175, 348-360.	7.9	10
18	An enhanced formulation to determine Young's and shear moduli of thin films by means of Impulse Excitation Technique. Thin Solid Films, 2017, 631, 172-179.	1.8	9

Akram Alhussein

#	Article	IF	CITATIONS
19	Bifunctional TiO2/AlZr Thin Films on Steel Substrate Combining Corrosion Resistance and Photocatalytic Properties. Coatings, 2019, 9, 564.	2.6	8
20	Effect of oxygen addition on microstructure and mechanical properties of quaternary TNTZ superelastic thin films obtained by magnetron sputtering. Materials Chemistry and Physics, 2018, 217, 262-269.	4.0	7
21	Multilayered models for determining the Young's modulus of thin films by means of Impulse Excitation Technique. Mechanics of Materials, 2019, 137, 103143.	3.2	6
22	Structural and Magneto-Electrical Properties of Bi2-xSmxSr2CaCu2O8 + δ High Tc Superconductor Prepared by Pechini Method. Journal of Superconductivity and Novel Magnetism, 2020, 33, 3321-3331.	1.8	6
23	Marine Antibiofouling Properties of TiO2 and Ti-Cu-O Films Deposited by Aerosol-Assisted Chemical Vapor Deposition. Coatings, 2020, 10, 779.	2.6	6
24	Biological responses at the interface of Ti-doped diamond-like carbon surfaces for indoor environment application. Environmental Science and Pollution Research, 2020, 27, 31120-31129.	5.3	6
25	Effect of carbon content on structural, mechanical and tribological properties of Cr-V-C-N coatings. Thin Solid Films, 2021, 732, 138782.	1.8	6
26	Al-Ti-W alloys deposited by magnetron sputtering: Effective barrier to prevent steel hydrogen embrittlement. Applied Surface Science, 2021, 567, 150786.	6.1	6
27	Effect of He and N2 gas on the mechanical and tribological assessment of SS316L coating deposited by cold spraying process. Journal of Materials Science, 2022, 57, 5258-5274.	3.7	6
28	Structural and microstructural analysis of bifunctional TiO2/Al-Zr thin film deposited by hybrid process. Thin Solid Films, 2020, 709, 138255.	1.8	5
29	Bio-Numerical Analysis of the Human Ankle-Foot Model Corresponding to Neutral Standing Condition. Journal of Biomedical Physics and Engineering, 2020, 10, 645-650.	0.9	5
30	Phase stability, mechanical and optoelectronic properties of lanthanum chromite-based perovskite oxide. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	5
31	Self-combustion of Ti-C and Ti-Al Powder Mixture in a Nitrogen Atmosphere: Product Application as Reinforcement in Metal Matrix Composites. Journal of Materials Engineering and Performance, 2020, 29, 1984-1994.	2.5	4
32	Stress determination in a thermally grown oxide on Ni38Cr alloy by use of micro/nanogauge gratings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 812, 141079.	5.6	4
33	First-principles calculations to investigate structural, magnetic, electronic and elastic properties of full-Heusler alloys Co2MB (M=V, Mn). Solid State Communications, 2021, 337, 114426.	1.9	4
34	Elastic behavior of anisotropic coatings sputter-deposited at oblique incidence. International Journal of Mechanical Sciences, 2021, 191, 106050.	6.7	3
35	Effect of O2 flow rate on the structure, wettability and tribo-mechanical behaviour of Zr-O-N thin films. Surfaces and Interfaces, 2021, 26, 101441.	3.0	3
36	Effect of silicon content and defects on the lifetime of ductile cast iron. MATEC Web of Conferences, 2014, 12, 04006.	0.2	2

AKRAM ALHUSSEIN

#	Article	IF	CITATIONS
37	Architectured Cu–TNTZ Bilayered Coatings Showing Bacterial Inactivation under Indoor Light and Controllable Copper Release: Effect of the Microstructure on Copper Diffusion. Coatings, 2020, 10, 574.	2.6	1
38	Influence of sand movement in the Sahara on the erosion of pipeline network. EPJ Web of Conferences, 2010, 6, 42018.	0.3	0
39	Microstructure and Mechanical Properties of Chromium Carbide Coatings Deposited by Magnetron Sputtering Technique. Defect and Diffusion Forum, 0, 397, 118-124.	0.4	0
40	Influence of short-time thermal ageing on the behaviour of double lap composite adhesively bonded joints. SN Applied Sciences, 2020, 2, 1.	2.9	0
41	Mechanical and Tribological Behaviors of Nanocomposite Titanium Nitrides Coatings. Defect and Diffusion Forum, 0, 406, 312-318.	0.4	0
42	Microstructural, mechanical and tribological characterization of Co–20 wt% WC composite elaborated by solid-phase sintering of Co–W–C powders mixture. Tribology - Materials, Surfaces and Interfaces, 2022, 16, 202-210.	1.4	0