
Weixing Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8436830/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of salt and waterlogging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Science, 2009, 176, 575-582.	3.6	196
2	Improved estimation of rice aboveground biomass combining textural and spectral analysis of UAV imagery. Precision Agriculture, 2019, 20, 611-629.	6.0	171
3	Leaf senescence and grain filling affected by post-anthesis high temperatures in two different wheat cultivars. Plant Growth Regulation, 2007, 51, 149-158.	3.4	162
4	Biogas production from undiluted chicken manure and maize silage: A study of ammonia inhibition in high solids anaerobic digestion. Bioresource Technology, 2016, 218, 1215-1223.	9.6	140
5	Postâ€heading heat stress and yield impact in winter wheat of China. Global Change Biology, 2014, 20, 372-381.	9.5	134
6	Combining Color Indices and Textures of UAV-Based Digital Imagery for Rice LAI Estimation. Remote Sensing, 2019, 11, 1763.	4.0	126
7	Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities inÂwheat seedlings. Plant Physiology and Biochemistry, 2014, 74, 185-192.	5.8	125
8	Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat. Plant Physiology and Biochemistry, 2014, 82, 34-43.	5.8	125
9	A Wheat Spike Detection Method in UAV Images Based on Improved YOLOv5. Remote Sensing, 2021, 13, 3095.	4.0	120
10	Optimal Leaf Positions for SPAD Meter Measurement in Rice. Frontiers in Plant Science, 2016, 7, 719.	3.6	118
11	Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Plant Methods, 2019, 15, 17.	4.3	117
12	Evaluation of RGB, Color-Infrared and Multispectral Images Acquired from Unmanned Aerial Systems for the Estimation of Nitrogen Accumulation in Rice. Remote Sensing, 2018, 10, 824.	4.0	115
13	Wheat Growth Monitoring and Yield Estimation based on Multi-Rotor Unmanned Aerial Vehicle. Remote Sensing, 2020, 12, 508.	4.0	114
14	Climate change impacts on regional winter wheat production in main wheat production regions of China. Agricultural and Forest Meteorology, 2013, 171-172, 234-248.	4.8	110
15	Induction of chilling tolerance in wheat during germination by pre-soaking seed with nitric oxide and gibberellin. Plant Growth Regulation, 2013, 71, 31-40.	3.4	108
16	Testing the responses of four wheat crop models to heat stress at anthesis and grain filling. Global Change Biology, 2016, 22, 1890-1903.	9.5	107
17	Activities of key enzymes for starch synthesis in relation to growth of superior and inferior grains on winter wheat (Triticum aestivum L.) spike. Plant Growth Regulation, 2003, 41, 247-257.	3.4	99
18	Evaluation of Six Algorithms to Monitor Wheat Leaf Nitrogen Concentration. Remote Sensing, 2015, 7, 14939-14966.	4.0	99

#	Article	IF	CITATIONS
19	Cadmium stress in wheat seedlings: growth, cadmium accumulation and photosynthesis. Acta Physiologiae Plantarum, 2010, 32, 365-373.	2.1	92
20	Nitrogen fertiliser rate and post-anthesis waterlogging effects on carbohydrate and nitrogen dynamics in wheat. Plant and Soil, 2008, 304, 301-314.	3.7	91
21	Combining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in Rice. Frontiers in Plant Science, 2018, 9, 936.	3.6	86
22	A Comparative Assessment of Different Modeling Algorithms for Estimating Leaf Nitrogen Content in Winter Wheat Using Multispectral Images from an Unmanned Aerial Vehicle. Remote Sensing, 2018, 10, 2026.	4.0	84
23	Winter Wheat Photosynthesis and Grain Yield Responses to Spring Freeze. Agronomy Journal, 2015, 107, 1002-1010.	1.8	77
24	Parental Drought-Priming Enhances Tolerance to Post-anthesis Drought in Offspring of Wheat. Frontiers in Plant Science, 2018, 9, 261.	3.6	75
25	Non-destructive Assessment of Plant Nitrogen Parameters Using Leaf Chlorophyll Measurements in Rice. Frontiers in Plant Science, 2016, 7, 1829.	3.6	74
26	Effects of short-term high temperature on grain quality and starch granules of rice (Oryza sativa L.) at post-anthesis stage. Protoplasma, 2017, 254, 935-943.	2.1	69
27	Assessing the Impact of Spatial Resolution on the Estimation of Leaf Nitrogen Concentration Over the Full Season of Paddy Rice Using Near-Surface Imaging Spectroscopy Data. Frontiers in Plant Science, 2018, 9, 964.	3.6	69
28	Predicting Rice Grain Yield Based on Dynamic Changes in Vegetation Indexes during Early to Mid-Growth Stages. Remote Sensing, 2019, 11, 387.	4.0	69
29	Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat. Frontiers in Plant Science, 2016, 7, 501.	3.6	65
30	Hydrogen Peroxide and Abscisic Acid Mediate Salicylic Acid-Induced Freezing Tolerance in Wheat. Frontiers in Plant Science, 2018, 9, 1137.	3.6	65
31	Determination of critical nitrogen dilution curve based on leaf area index in rice. Field Crops Research, 2014, 167, 76-85.	5.1	64
32	Effects of low nitrogen supply on relationships between photosynthesis and nitrogen status at different leaf position in wheat seedlings. Plant Growth Regulation, 2013, 70, 257-263.	3.4	62
33	Impacts of Alkaline Hydrogen Peroxide Pretreatment on Chemical Composition and Biochemical Methane Potential of Agricultural Crop Stalks. Energy & Fuels, 2015, 29, 4966-4975.	5.1	62
34	Physiological, proteomic and transcriptional responses of wheat to combination of drought or waterlogging with late spring low temperature. Functional Plant Biology, 2014, 41, 690.	2.1	57
35	Estimation of area- and mass-based leaf nitrogen contents of wheat and rice crops from water-removed spectra using continuous wavelet analysis. Plant Methods, 2018, 14, 76.	4.3	55
36	Involvement of endogenous plant hormones in the effect of mixed nitrogen source on growth and tillering of wheat. Journal of Plant Nutrition, 1998, 21, 87-97.	1.9	54

#	Article	IF	CITATIONS
37	Comparison of different critical nitrogen dilution curves for nitrogen diagnosis in rice. Scientific Reports, 2017, 7, 42679.	3.3	47
38	Estimation of Nitrogen Nutrition Status in Winter Wheat From Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery. Frontiers in Plant Science, 2019, 10, 1601.	3.6	47
39	Spectroscopic Estimation of Biomass in Canopy Components of Paddy Rice Using Dry Matter and Chlorophyll Indices. Remote Sensing, 2017, 9, 319.	4.0	46
40	Effect of water deficit during vegetative growth periods on post-anthesis photosynthetic capacity and grain yield in winter wheat (Triticum aestivum L.). Acta Physiologiae Plantarum, 2015, 37, 1.	2.1	45
41	Integrating remote sensing information with crop model to monitor wheat growth and yield based on simulation zone partitioning. Precision Agriculture, 2018, 19, 55-78.	6.0	45
42	Potential of UAV-Based Active Sensing for Monitoring Rice Leaf Nitrogen Status. Frontiers in Plant Science, 2018, 9, 1834.	3.6	45
43	Using a Portable Active Sensor to Monitor Growth Parameters and Predict Grain Yield of Winter Wheat. Sensors, 2019, 19, 1108.	3.8	45
44	Estimation of Rice Growth Parameters Based on Linear Mixed-Effect Model Using Multispectral Images from Fixed-Wing Unmanned Aerial Vehicles. Remote Sensing, 2019, 11, 1371.	4.0	44
45	Modelling the effects of post-heading heat stress on biomass growth of winter wheat. Agricultural and Forest Meteorology, 2017, 247, 476-490.	4.8	42
46	Monitoring leaf potassium content using hyperspectral vegetation indices in rice leaves. Precision Agriculture, 2020, 21, 324-348.	6.0	42
47	New Critical Nitrogen Curve Based on Leaf Area Index for Winter Wheat. Agronomy Journal, 2014, 106, 379-389.	1.8	41
48	Design and Test of a Soil Profile Moisture Sensor Based on Sensitive Soil Layers. Sensors, 2018, 18, 1648.	3.8	39
49	Post-Heading Heat Stress in Rice of South China during 1981-2010. PLoS ONE, 2015, 10, e0130642.	2.5	39
50	Wheat plants exposed to winter warming are more susceptible to low temperature stress in the spring. Plant Growth Regulation, 2015, 77, 11-19.	3.4	38
51	Evaluation of Aboveground Nitrogen Content of Winter Wheat Using Digital Imagery of Unmanned Aerial Vehicles. Sensors, 2019, 19, 4416.	3.8	38
52	Modelling the effects of heat stress on post-heading durations in wheat: A comparison of temperature response routines. Agricultural and Forest Meteorology, 2016, 222, 45-58.	4.8	37
53	Canopy Chlorophyll Density Based Index for Estimating Nitrogen Status and Predicting Grain Yield in Rice. Frontiers in Plant Science, 2017, 8, 1829.	3.6	35
54	Response of Potatoes to nitrogen concentrations differ with nitrogen forms. Journal of Plant Nutrition, 1998, 21, 615-623.	1.9	34

#	Article	IF	CITATIONS
55	Salt stress increases content and size of glutenin macropolymers in wheat grain. Food Chemistry, 2016, 197, 516-521.	8.2	32
56	Stage-dependent temperature sensitivity function predicts seed-setting rates under short-term extreme heat stress in rice. Agricultural and Forest Meteorology, 2018, 256-257, 196-206.	4.8	32
57	Chlorophyll meter–based nitrogen fertilizer optimization algorithm and nitrogen nutrition index for inâ€season fertilization of paddy rice. Agronomy Journal, 2020, 112, 288-300.	1.8	32
58	Water-deficit treatment followed by re-watering stimulates seminal root growth associated with hormone balance and photosynthesis in wheat (Triticum aestivum L.) seedlings. Plant Growth Regulation, 2015, 77, 201-210.	3.4	30
59	Using an Active-Optical Sensor to Develop an Optimal NDVI Dynamic Model for High-Yield Rice Production (Yangtze, China). Sensors, 2017, 17, 672.	3.8	30
60	Estimating Leaf Area Index with a New Vegetation Index Considering the Influence of Rice Panicles. Remote Sensing, 2019, 11, 1809.	4.0	29
61	Identification of quantitative trait loci for cadmium tolerance and accumulation in wheat. Acta Physiologiae Plantarum, 2012, 34, 191-202.	2.1	28
62	Determination of Critical Nitrogen Dilution Curve Based on Stem Dry Matter in Rice. PLoS ONE, 2014, 9, e104540.	2.5	28
63	Nitrogen topdressing timing modifies free amino acids profiles and storage protein gene expression in wheat grain. BMC Plant Biology, 2018, 18, 353.	3.6	28
64	Nitrogen topdressing timing modifies the gluten quality and grain hardness related protein levels as revealed by iTRAQ. Food Chemistry, 2019, 277, 135-144.	8.2	28
65	Assimilating Remotely Sensed Information with the WheatGrow Model Based on the Ensemble Square Root Filter forImproving Regional Wheat Yield Forecasts. Plant Production Science, 2013, 16, 352-364.	2.0	27
66	A Model-Based Estimate of Regional Wheat Yield Gaps and Water Use Efficiency in Main Winter Wheat Production Regions of China. Scientific Reports, 2017, 7, 6081.	3.3	27
67	Early Detection of Powdery Mildew Disease and Accurate Quantification of Its Severity Using Hyperspectral Images in Wheat. Remote Sensing, 2021, 13, 3612.	4.0	27
68	A Comparative Assessment of Measures of Leaf Nitrogen in Rice Using Two Leaf-Clip Meters. Sensors, 2020, 20, 175.	3.8	26
69	Estimation of Crop Yield From Combined Optical and SAR Imagery Using Gaussian Kernel Regression. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 10520-10534.	4.9	26
70	A New Curve of Critical Nitrogen Concentration Based on Spike Dry Matter for Winter Wheat in Eastern China. PLoS ONE, 2016, 11, e0164545.	2.5	25
71	Assessing the Spectral Properties of Sunlit and Shaded Components in Rice Canopies with Near-Ground Imaging Spectroscopy Data. Sensors, 2017, 17, 578.	3.8	25
72	Estimation of Canopy Biomass Components in Paddy Rice from Combined Optical and SAR Data Using Multi-Target Gaussian Regressor Stacking. Remote Sensing, 2020, 12, 2564.	4.0	25

#	Article	IF	CITATIONS
73	Quantitative Classification of Rice (Oryza sativa L.) Root Length and Diameter Using Image Analysis. PLoS ONE, 2017, 12, e0169968.	2.5	25
74	Simulating Organ Growth in Wheat Based on the Organ–Weight Fraction Concept. Plant Production Science, 2002, 5, 248-256.	2.0	24
75	A Quantitative Knowledge-based Model for Designing Suitable Growth Dynamics in Rice. Plant Production Science, 2006, 9, 93-105.	2.0	24
76	Hyperspectral Estimation of Canopy Leaf Biomass Phenotype per Ground Area Using a Continuous Wavelet Analysis in Wheat. Frontiers in Plant Science, 2018, 9, 1360.	3.6	24
77	Current rice models underestimate yield losses from shortâ€ŧerm heat stresses. Global Change Biology, 2021, 27, 402-416.	9.5	24
78	Mechano-stimulated modifications in the chloroplast antioxidant system and proteome changes are associated with cold response in wheat. BMC Plant Biology, 2015, 15, 219.	3.6	23
79	Evaluation of One-Class Support Vector Classification for Mapping the Paddy Rice Planting Area in Jiangsu Province of China from Landsat 8 OLI Imagery. Remote Sensing, 2018, 10, 546.	4.0	23
80	Low Nitrogen Priming Enhances Photosynthesis Adaptation to Water-Deficit Stress in Winter Wheat (Triticum aestivum L.) Seedlings. Frontiers in Plant Science, 2019, 10, 818.	3.6	23
81	Use of an Active Canopy Sensor Mounted on an Unmanned Aerial Vehicle to Monitor the Growth and Nitrogen Status of Winter Wheat. Remote Sensing, 2020, 12, 3684.	4.0	23
82	Estimation of Vertical Leaf Nitrogen Distribution Within a Rice Canopy Based on Hyperspectral Data. Frontiers in Plant Science, 2019, 10, 1802.	3.6	23
83	Estimation of Leaf Nitrogen Content in Wheat Based on Fusion of Spectral Features and Deep Features from Near Infrared Hyperspectral Imagery. Sensors, 2021, 21, 613.	3.8	23
84	Changes of transcriptome and proteome are associated with the enhanced post-anthesis high temperature tolerance induced by pre-anthesis heat priming in wheat. Plant Growth Regulation, 2016, 79, 135-145.	3.4	22
85	Effect of post-anthesis waterlogging on biosynthesis and granule size distribution of starch in wheat grains. Plant Physiology and Biochemistry, 2018, 132, 222-228.	5.8	22
86	Exploring Novel Bands and Key Index for Evaluating Leaf Equivalent Water Thickness in Wheat Using Hyperspectra Influenced by Nitrogen. PLoS ONE, 2014, 9, e96352.	2.5	22
87	Predicting the Protein Content of Grain in Winter Wheat with Meteorological and Genotypic Factors. Plant Production Science, 2006, 9, 323-333.	2.0	21
88	Extracting Red Edge Position Parameters from Ground- and Space-Based Hyperspectral Data for Estimation of Canopy Leaf Nitrogen Concentration in Rice. Plant Production Science, 2011, 14, 270-281.	2.0	21
89	Kinetics of Methane Production from Swine Manure and Buffalo Manure. Applied Biochemistry and Biotechnology, 2015, 177, 985-995.	2.9	21
90	Variations in Protein Concentration and Nitrogen Sources in Different Positions of Grain in Wheat. Frontiers in Plant Science, 2016, 7, 942.	3.6	21

#	Article	IF	CITATIONS
91	Generating Red-Edge Images at 3 M Spatial Resolution by Fusing Sentinel-2 and Planet Satellite Products. Remote Sensing, 2019, 11, 1422.	4.0	21
92	Generation and scavenging of reactive oxygen species in wheat flag leaves under combined shading and waterlogging stress. Functional Plant Biology, 2012, 39, 71.	2.1	20
93	Comparison of Five Nitrogen Dressing Methods to Optimize Rice Growth. Plant Production Science, 2014, 17, 66-80.	2.0	20
94	Development of a Critical Nitrogen Dilution Curve Based on Leaf Area Duration in Wheat. Frontiers in Plant Science, 2017, 8, 1517.	3.6	19
95	HISTIF: A New Spatiotemporal Image Fusion Method for High-Resolution Monitoring of Crops at the Subfield Level. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 4607-4626.	4.9	19
96	Development of a Novel Bidirectional Canopy Reflectance Model for Row-Planted Rice and Wheat. Remote Sensing, 2014, 6, 7632-7659.	4.0	17
97	Wireless Channel Propagation Characteristics and Modeling Research in Rice Field Sensor Networks. Sensors, 2018, 18, 3116.	3.8	17
98	Relationships of protein composition, gluten structure, and dough rheological properties with short biscuits quality of soft wheat varieties. Agronomy Journal, 2020, 112, 1921-1930.	1.8	17
99	Estimation of rice plant potassium accumulation based on non-negative matrix factorization using hyperspectral reflectance. Precision Agriculture, 2021, 22, 51-74.	6.0	17
100	In-season variable rate nitrogen recommendation for wheat precision production supported by fixed-wing UAV imagery. Precision Agriculture, 2022, 23, 830-853.	6.0	17
101	Analysis and Evaluation of the Image Preprocessing Process of a Six-Band Multispectral Camera Mounted on an Unmanned Aerial Vehicle for Winter Wheat Monitoring. Sensors, 2019, 19, 747.	3.8	16
102	Comparison of Different Hyperspectral Vegetation Indices for Estimating Canopy Leaf Nitrogen Accumulation in Rice. Agronomy Journal, 2014, 106, 1911-1920.	1.8	15
103	Enhanced Rubisco activation associated with maintenance of electron transport alleviates inhibition of photosynthesis under low nitrogen conditions in winter wheat seedlings. Journal of Experimental Botany, 2018, 69, 5477-5488.	4.8	15
104	Evaluation of Three Techniques for Correcting the Spatial Scaling Bias of Leaf Area Index. Remote Sensing, 2018, 10, 221.	4.0	15
105	Soil nitrogen balance and nitrogen utilization of winter wheat affected by straw management and nitrogen application in the Yangtze river basin of China. Archives of Agronomy and Soil Science, 2019, 65, 1-15.	2.6	15
106	Development of Chlorophyll-Meter-Index-Based Dynamic Models for Evaluation of High-Yield Japonica Rice Production in Yangtze River Reaches. Agronomy, 2019, 9, 106.	3.0	15
107	UAV-Borne Dual-Band Sensor Method for Monitoring Physiological Crop Status. Sensors, 2019, 19, 816.	3.8	15
108	Modelling the effects of post-heading heat stress on biomass partitioning, and grain number and weight of wheat. Journal of Experimental Botany, 2020, 71, 6015-6031.	4.8	15

#	Article	IF	CITATIONS
109	AAVI: A Novel Approach to Estimating Leaf Nitrogen Concentration in Rice From Unmanned Aerial Vehicle Multispectral Imagery at Early and Middle Growth Stages. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 6716-6728.	4.9	15
110	Comparative analysis of vegetation indices, non-parametric and physical retrieval methods for monitoring nitrogen in wheat using UAV-based multispectral imagery. , 2016, , .		14
111	Evaluation of the chlorophyll meter and GreenSeeker for the assessment of rice nitrogen status. Advances in Animal Biosciences, 2017, 8, 359-363.	1.0	14
112	Spatial Distribution of Leaf Area Index and Leaf N Content In Relation To Grain Yield and Nitrogen Uptake in Rice. Plant Production Science, 2007, 10, 136-145.	2.0	13
113	Physiological responses of wheat (Triticum aestivum L.) germination to elevated ammonium concentrations: reserve mobilization, sugar utilization, and antioxidant metabolism. Plant Growth Regulation, 2017, 81, 209-220.	3.4	13
114	Effect of Postanthesis High Temperature on Grain Quality Formation for Wheat. Agronomy Journal, 2017, 109, 1970-1980.	1.8	13
115	An automatic method for counting wheat tiller number in the field with terrestrial LiDAR. Plant Methods, 2020, 16, 132.	4.3	13
116	Skewed distribution of leaf color RGB model and application of skewed parameters in leaf color description model. Plant Methods, 2020, 16, 23.	4.3	13
117	Magnesium Application Promotes Rubisco Activation and Contributes to High-Temperature Stress Alleviation in Wheat During the Grain Filling. Frontiers in Plant Science, 2021, 12, 675582.	3.6	13
118	A Knowledge-Based Model for Nitrogen Management in Rice and Wheat. Plant Production Science, 2009, 12, 100-108.	2.0	12
119	Preface: Recent Advances in Remote Sensing for Crop Growth Monitoring. Remote Sensing, 2016, 8, 116.	4.0	12
120	Difference and Potential of the Upward and Downward Sun-Induced Chlorophyll Fluorescence on Detecting Leaf Nitrogen Concentration in Wheat. Remote Sensing, 2018, 10, 1315.	4.0	12
121	Spectrum- and RGB-D-Based Image Fusion for the Prediction of Nitrogen Accumulation in Wheat. Remote Sensing, 2020, 12, 4040.	4.0	12
122	Responses of Grain Yield and Yield Related Parameters to Post-Heading Low-Temperature Stress in Japonica Rice. Plants, 2021, 10, 1425.	3.5	12
123	Exploring the Vertical Distribution of Structural Parameters and Light Radiation in Rice Canopies by the Coupling Model and Remote Sensing. Remote Sensing, 2015, 7, 5203-5221.	4.0	11
124	Early nitrogen deficiency favors high nitrogen recovery efficiency by improving deeper soil root growth and reducing nitrogen loss in wheat. Archives of Agronomy and Soil Science, 2020, 66, 1384-1398.	2.6	11
125	Does the Organ-Based N Dilution Curve Improve the Predictions of N Status in Winter Wheat?. Agriculture (Switzerland), 2020, 10, 500.	3.1	11
126	Estimating the Leaf Nitrogen Content with a New Feature Extracted from the Ultra-High Spectral and Spatial Resolution Images in Wheat. Remote Sensing, 2021, 13, 739.	4.0	11

#	Article	IF	CITATIONS
127	Multi-Modal Deep Learning for Weeds Detection in Wheat Field Based on RGB-D Images. Frontiers in Plant Science, 2021, 12, 732968.	3.6	11
128	Using an Active Sensor to Develop New Critical Nitrogen Dilution Curve for Winter Wheat. Sensors, 2020, 20, 1577.	3.8	10
129	Evaluation of Three Portable Optical Sensors for Non-Destructive Diagnosis of Nitrogen Status in Winter Wheat. Sensors, 2021, 21, 5579.	3.8	10
130	New flavonoid-C-glycosides from Triticum aestivum. Chemistry of Natural Compounds, 2008, 44, 171-173.	0.8	9
131	An assessment of multi-view spectral information from UAV-based color-infrared images for improved estimation of nitrogen nutrition status in winter wheat. Precision Agriculture, 2022, 23, 1653-1674.	6.0	9
132	Modeling grain protein formation in relation to nitrogen uptake and remobilization in rice plant. Frontiers of Agriculture in China, 2007, 1, 8-16.	0.2	8
133	Separating the impacts of heat stress events from rising mean temperatures on winter wheat yield of China. Environmental Research Letters, 2021, 16, 124035.	5.2	8
134	Effects of Low Temperature on the Amino Acid Composition of Wheat Grains. Agronomy, 2022, 12, 1171.	3.0	8
135	Improvement of pistillate flowers yield with GA3 in heavy metals treated plants. Plant Growth Regulation, 2006, 48, 247.	3.4	7
136	Effects of split nitrogen fertilization on post-anthesis photoassimilates, nitrogen use efficiency and grain yield in malting barley. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2011, 61, 410-420.	0.6	7
137	Starch granule size distribution in wheat endosperm indirectly correlates to pasting property indicated by near-isogenic lines with different null- <i>waxy</i> alleles. Starch/Staerke, 2017, 69, 1600139.	2.1	7
138	Delineating soil nutrient management zones based on optimal sampling interval in medium- and small-scale intensive farming systems. Precision Agriculture, 2022, 23, 538-558.	6.0	7
139	Individual and Combined Effects of Booting and Flowering High-Temperature Stress on Rice Biomass Accumulation. Plants, 2021, 10, 1021.	3.5	6
140	MACA: A Relative Radiometric Correction Method for Multiflight Unmanned Aerial Vehicle Images Based on Concurrent Satellite Imagery. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-14.	6.3	6
141	Monitoring of Nitrogen Indices in Wheat Leaves Based on the Integration of Spectral and Canopy Structure Information. Agronomy, 2022, 12, 833.	3.0	6
142	BRDF Effect on the Estimation of Canopy Chlorophyll Content in Paddy Rice from UAV-Based Hyperspectral Imagery. , 2018, , .		5
143	Reduced 15N Losses by Winter and Spring Night-Warming Are Related to Root Distribution of Winter Wheat. Frontiers in Plant Science, 2019, 10, 771.	3.6	5
144	An assessment of Planet satellite imagery for county-wide mapping of rice planting areas in Jiangsu Province, China with one-class classification approaches. International Journal of Remote Sensing, 2021, 42, 7610-7635.	2.9	5

#	Article	IF	CITATIONS
145	Combining Remote Sensing and Meteorological Data for Improved Rice Plant Potassium Content Estimation. Remote Sensing, 2021, 13, 3502.	4.0	5
146	Assessment of spectral variation between rice canopy components using spectral feature analysis of near-ground hyperspectral imaging data. , 2016, , .		4
147	Preanthesis Root Growth and Nitrogen Uptake Improved Wheat Grain Yield and Nitrogen Use Efficiency. Agronomy Journal, 2019, 111, 3048-3056.	1.8	4
148	Quantification of Cultivar Change in Double Rice Regions under a Warming Climate during 1981–2009 in China. Agronomy, 2019, 9, 794.	3.0	4
149	A Rice Model System for Determining Suitable Sowing and Transplanting Dates. Agronomy, 2020, 10, 604.	3.0	4
150	Monitoring Wheat Growth Using a Portable Three-Band Instrument for Crop Growth Monitoring and Diagnosis. Sensors, 2020, 20, 2894.	3.8	4
151	Relationship of Starch Pasting Properties and Dough Rheology, and the Role of Starch in Determining Quality of Short Biscuit. Frontiers in Plant Science, 2022, 13, 829229.	3.6	4
152	Comparisons of cadmium tolerance and accumulation at seedling stage in wheat varieties grown in different decades in China. Acta Physiologiae Plantarum, 2011, 33, 1811-1819.	2.1	3
153	Accumulation of Highâ€Molecularâ€Weight Glutenin Subunits in Superior and Inferior Grains of a Winter Wheat, Yangmai 158. Cereal Chemistry, 2017, 94, 508-512.	2.2	3
154	Effects of short-term post-anthesis high-temperature stress on dynamic process of accumulation of grain protein and its composition in rice (Oryza sativa L.). Revista Brasileira De Botanica, 2017, 40, 49-58.	1.3	3
155	Detecting Rice Blast Disease Using Model Inverted Biochemical Variables from Close-Range Reflectance Imagery of Fresh Leaves. , 2018, , .		3
156	Laboratory shortwave infrared reflectance spectroscopy for estimating grain protein content in rice and wheat. International Journal of Remote Sensing, 2021, 42, 4467-4492.	2.9	3
157	Development of a growth model-based decision support system for crop management. Frontiers of Agriculture in China, 2007, 1, 296-300.	0.2	1
158	Mapping rice planting area from Landsat 8 imagery using one-class support vector machine. , 2016, , .		1
159	China Perspectives on Climate Change and Agriculture: Impacts, Adaptation and Mitigation Potential. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2012, , 193-208.	0.4	0
160	Retrieval of LEAF pigment content using wavelet-based prospect inversion from leaf reflectance spectra. , 2016, , .		0
161	Improved Estimation of Leaf Chlorophyll Content from Non-Noon Reflectance Spectra of Wheat Canopies by Avoiding the Effect of Soil Background. , 2018, , .		0
162	Power and Difference of the Up-and-Downward Sun-Induced Chlorophyll Fluorescence on Detecting Leaf Nitrogen Content in Wheat at the Leaf Scale. , 2018, , .		0

#	Article	IF	CITATIONS
163	Improving the Estimation of Leaf Area Index in Winter Wheat at Regional Scale. , 2018, , .		0