
Victor Greiff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8436690/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioinformatic and Statistical Analysis of Adaptive Immune Repertoires. Trends in Immunology, 2015, 36, 738-749.	2.9	178
2	A bioinformatic framework for immune repertoire diversity profiling enables detection of immunological status. Genome Medicine, 2015, 7, 49.	3.6	177
3	Systems Analysis Reveals High Genetic and Antigen-Driven Predetermination of Antibody Repertoires throughout B Cell Development. Cell Reports, 2017, 19, 1467-1478.	2.9	172
4	Computational Strategies for Dissecting the High-Dimensional Complexity of Adaptive Immune Repertoires. Frontiers in Immunology, 2018, 9, 224.	2.2	164
5	Mucosal or systemic microbiota exposures shape the BÂcell repertoire. Nature, 2020, 584, 274-278.	13.7	132
6	Learning the High-Dimensional Immunogenomic Features That Predict Public and Private Antibody Repertoires. Journal of Immunology, 2017, 199, 2985-2997.	0.4	124
7	Large-scale network analysis reveals the sequence space architecture of antibody repertoires. Nature Communications, 2019, 10, 1321.	5.8	103
8	Resident memory CD8 T cells persist for years in human small intestine. Journal of Experimental Medicine, 2019, 216, 2412-2426.	4.2	101
9	A compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding. Cell Reports, 2021, 34, 108856.	2.9	101
10	Animal Immunization, in Vitro Display Technologies, and Machine Learning for Antibody Discovery. Trends in Biotechnology, 2021, 39, 1263-1273.	4.9	74
11	Single-cell BCR and transcriptome analysis after influenza infection reveals spatiotemporal dynamics of antigen-specific B cells. Cell Reports, 2021, 35, 109286.	2.9	67
12	Comprehensive Evaluation and Optimization of Amplicon Library Preparation Methods for High-Throughput Antibody Sequencing. PLoS ONE, 2014, 9, e96727.	1.1	63
13	Inferred Allelic Variants of Immunoglobulin Receptor Genes: A System for Their Evaluation, Documentation, and Naming. Frontiers in Immunology, 2019, 10, 435.	2.2	63
14	Quantitative assessment of the robustness of next-generation sequencing of antibody variable gene repertoires from immunized mice. BMC Immunology, 2014, 15, 40.	0.9	61
15	High-throughput antibody engineering in mammalian cells by CRISPR/Cas9-mediated homology-directed mutagenesis. Nucleic Acids Research, 2018, 46, 7436-7449.	6.5	61
16	Mining adaptive immune receptor repertoires for biological and clinical information using machine learning. Current Opinion in Systems Biology, 2020, 24, 109-119.	1.3	58
17	Augmenting adaptive immunity: progress and challenges in the quantitative engineering and analysis of adaptive immune receptor repertoires. Molecular Systems Design and Engineering, 2019, 4, 701-736.	1.7	57
18	Discrete populations of isotype-switched memory B lymphocytes are maintained in murine spleen and bone marrow. Nature Communications, 2020, 11, 2570.	5.8	54

VICTOR GREIFF

#	Article	IF	CITATIONS
19	Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies. MAbs, 2022, 14, 2008790.	2.6	51
20	Comparison of methods for phylogenetic B-cell lineage inference using time-resolved antibody repertoire simulations (AbSim). Bioinformatics, 2017, 33, 3938-3946.	1.8	50
21	immuneSIM: tunable multi-feature simulation of B- and T-cell receptor repertoires for immunoinformatics benchmarking. Bioinformatics, 2020, 36, 3594-3596.	1.8	48
22	Immunoglobulin germline gene variation and its impact on human disease. Genes and Immunity, 2021, 22, 205-217.	2.2	48
23	Diversity in immunogenomics: the value and the challenge. Nature Methods, 2021, 18, 588-591.	9.0	40
24	In silico proof of principle of machine learning-based antibody design at unconstrained scale. MAbs, 2022, 14, 2031482.	2.6	40
25	Benchmarking immunoinformatic tools for the analysis of antibody repertoire sequences. Bioinformatics, 2020, 36, 1731-1739.	1.8	39
26	The immuneML ecosystem for machine learning analysis of adaptive immune receptor repertoires. Nature Machine Intelligence, 2021, 3, 936-944.	8.3	35
27	Quantitative and Qualitative Analysis of Humoral Immunity Reveals Continued and Personalized Evolution in Chronic Viral Infection. Cell Reports, 2020, 30, 997-1012.e6.	2.9	34
28	Machine-designed biotherapeutics: opportunities, feasibility and advantages of deep learning in computational antibody discovery. Briefings in Bioinformatics, 2022, 23, .	3.2	29
29	Chronic Viral Infection Promotes Efficient Germinal Center B Cell Responses. Cell Reports, 2020, 30, 1013-1026.e7.	2.9	27
30	The TCR Repertoire Reconstitution in Multiple Sclerosis: Comparing One-Shot and Continuous Immunosuppressive Therapies. Frontiers in Immunology, 2020, 11, 559.	2.2	25
31	Progress and challenges in mass spectrometry-based analysis of antibody repertoires. Trends in Biotechnology, 2022, 40, 463-481.	4.9	23
32	Antibody variable sequences have a pronounced effect on cellular transport and plasma half-life. IScience, 2022, 25, 103746.	1.9	23
33	Individualized VDJ recombination predisposes the available Ig sequence space. Genome Research, 2021, 31, 2209-2224.	2.4	22
34	Modeling the Dynamics of T-Cell Development in the Thymus. Entropy, 2021, 23, 437.	1.1	19
35	TCR repertoire diversity in Multiple Sclerosis: High-dimensional bioinformatics analysis of sequences from brain, cerebrospinal fluid and peripheral blood. EBioMedicine, 2021, 68, 103429.	2.7	18
36	A minimal model of peptide binding predicts ensemble properties of serum antibodies. BMC Genomics, 2012, 13, 79.	1.2	16

VICTOR GREIFF

#	Article	IF	CITATIONS
37	Persistence of intrathecal oligoclonal B cells and IgG in multiple sclerosis. Journal of Neuroimmunology, 2019, 333, 576966.	1.1	16
38	Extended plasma half-life of albumin-binding domain fused human IgA upon pH-dependent albumin engagement of human FcRn <i>in vitro</i> and <i>in vivo</i> . MAbs, 2021, 13, 1893888.	2.6	16
39	Influenza vaccine response profiles are affected by vaccine preparation and preexisting immunity, but not HIV infection. Human Vaccines and Immunotherapeutics, 2015, 11, 391-396.	1.4	15
40	Low immunoglobulin E flags two distinct types of immune dysregulation. Clinical and Experimental Immunology, 2017, 187, 345-352.	1.1	15
41	Germline polymorphisms and alternative splicing of human immunoglobulin light chain genes. IScience, 2021, 24, 103192.	1.9	14
42	Profiling the specificity of clonally expanded plasma cells during chronic viral infection by single ell analysis. European Journal of Immunology, 2022, 52, 297-311.	1.6	11
43	Profiling the baseline performance and limits of machine learning models for adaptive immune receptor repertoire classification. GigaScience, 2022, 11, .	3.3	10
44	Inter- and intraspecies comparison of phylogenetic fingerprints and sequence diversity of immunoglobulin variable genes. Immunogenetics, 2020, 72, 279-294.	1.2	5
45	IgM Antibody Repertoire Fingerprints in Mice Are Personalized but Robust to Viral Infection Status. Frontiers in Cellular and Infection Microbiology, 2020, 10, 254.	1.8	5
46	Dynamic changes in the T cell receptor repertoire during treatment with radiotherapy combined with an immune checkpoint inhibitor. Molecular Oncology, 2021, 15, 2958-2968.	2.1	5
47	TCRpower: quantifying the detection power of T-cell receptor sequencing with a novel computational pipeline calibrated by spike-in sequences. Briefings in Bioinformatics, 2022, 23, .	3.2	5
48	Adaptive Immune Receptor Repertoire (AIRR) Community Guide to Repertoire Analysis. Methods in Molecular Biology, 2022, , 297-316.	0.4	5
49	A Nextflow pipeline for T-cell receptor repertoire reconstruction and analysis from RNA sequencing data. ImmunoInformatics, 2022, 6, 100012.	1.2	4
50	Ancestral diversity is limited in published T cell receptor sequencing studies. Immunity, 2021, 54, 2177-2179.	6.6	3
51	Editorial: Methods and Applications of Computational Immunology. Frontiers in Immunology, 2019, 10, 2818.	2.2	1