
Veronica Tofani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8436536/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards a National-Scale Dataset of Geotechnical and Hydrological Soil Parameters for Shallow Landslide Modeling. Data, 2022, 7, 37.	1.2	4
2	A methodological approach of QRA for slow-moving landslides at a regional scale. Landslides, 2022, 19, 1539-1561.	2.7	9
3	Shallow Landslides and Rockfalls Velocity Assessment at Regional Scale: A Methodology Based on a Morphometric Approach. Geosciences (Switzerland), 2022, 12, 177.	1.0	2
4	Multiseasonal probabilistic slope stability analysis of a large area of unsaturated pyroclastic soils. Landslides, 2021, 18, 1259-1274.	2.7	14
5	Root Reinforcement in Slope Stability Models: A Review. Geosciences (Switzerland), 2021, 11, 212.	1.0	61
6	KLC2020 implementation: challenges for the development of satellite landslide early warning systems. Landslides, 2021, 18, 3499-3502.	2.7	2
7	A Tool for the Automatic Aggregation and Validation of the Results of Physically Based Distributed Slope Stability Models. Water (Switzerland), 2021, 13, 2313.	1.2	5
8	Characterization of Hillslope Deposits for Physically-Based Landslide Forecasting Models. ICL Contribution To Landslide Disaster Risk Reduction, 2021, , 265-272.	0.3	0
9	Reconstruction of the Slope Instability Conditions Before the 2016 Failure in an Urbanized District of Florence (Italy), a UNESCO World Heritage Site. ICL Contribution To Landslide Disaster Risk Reduction, 2021, , 449-455.	0.3	2
10	Monitoring and Early Warning Systems: Applications and Perspectives. ICL Contribution To Landslide Disaster Risk Reduction, 2021, , 1-21.	0.3	2
11	Advanced Technologies for Landslides (WCoE 2017–2020). ICL Contribution To Landslide Disaster Risk Reduction, 2021, , 259-265.	0.3	0
12	Characterization and Geotechnical Investigations of a Riverbank Failure in Florence, Italy, UNESCO World Heritage Site. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2020, 146, .	1.5	14
13	Using Satellite Interferometry to Infer Landslide Sliding Surface Depth and Geometry. Remote Sensing, 2020, 12, 1462.	1.8	23
14	Department of Earth Sciences, University of Florence. Landslides, 2019, 16, 1809-1813.	2.7	1
15	EGU 2019 Sergey Soloviev Medal Lecture. Landslides, 2019, 16, 1613-1617.	2.7	0
16	Landslides detection through optimized hot spot analysis on persistent scatterers and distributed scatterers. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 156, 147-159.	4.9	71
17	Persistent Scatterers continuous streaming for landslide monitoring and mapping: the case of the Tuscany region (Italy). Landslides, 2019, 16, 2033-2044.	2.7	55
18	Geotechnical and hydrological characterization of hillslope deposits for regional landslide prediction modeling. Bulletin of Engineering Geology and the Environment, 2019, 78, 4875-4891.	1.6	45

VERONICA TOFANI

#	Article	IF	CITATIONS
19	A Sentinel-1 based hot-spot analysis: landslide mapping in north-western Italy. International Journal of Remote Sensing, 2019, 40, 7898-7921.	1.3	54
20	Combination of GNSS, satellite InSAR, and GBInSAR remote sensing monitoring to improve the understanding of a large landslide in high alpine environment. Geomorphology, 2019, 335, 62-75.	1.1	95
21	Invited and accepted speakers of the Fifth World Landslide Forum in Kyoto, 2020. Landslides, 2019, 16, 431-446.	2.7	3
22	Multitemporal UAV surveys for landslide mapping and characterization. Landslides, 2018, 15, 1045-1052.	2.7	160
23	TXT-tool 4.039-3.3: Debris Flows Modeling for Hazard Mapping. , 2018, , 761-770.		Ο
24	Spatial modeling of pyroclastic cover deposit thickness (depth to bedrock) in periâ€volcanic areas of Campania (southern Italy). Earth Surface Processes and Landforms, 2018, 43, 1757-1767.	1.2	27
25	TXT-tool 2.039-3.1: Satellite Remote Sensing Techniques for Landslides Detection and Mapping. , 2018, , 235-254.		2
26	TXT-tool 2.039-3.2 Ground-Based Remote Sensing Techniques for Landslides Mapping, Monitoring and Early Warning. , 2018, , 255-274.		6
27	The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: geomorphological features and landslide distribution. Landslides, 2018, 15, 5-19.	2.7	186
28	Satellite Data to Improve the Knowledge of Geohazards in World Heritage Sites. Remote Sensing, 2018, 10, 992.	1.8	21
29	Establishment of ICL Italian network. Landslides, 2018, 15, 1907-1908.	2.7	3
30	Combination of Rainfall Thresholds and Susceptibility Maps for Dynamic Landslide Hazard Assessment at Regional Scale. Frontiers in Earth Science, 2018, 6, .	0.8	75
31	Application of a physically based model to forecast shallow landslides at a regional scale. Natural Hazards and Earth System Sciences, 2018, 18, 1919-1935.	1.5	78
32	A Tool for Classification and Regression Using Random Forest Methodology: Applications to Landslide Susceptibility Mapping and Soil Thickness Modeling. Environmental Modeling and Assessment, 2017, 22, 201-214.	1.2	64
33	Soil characterization for shallow landslides modeling: a case study in the Northern Apennines (Central Italy). Landslides, 2017, 14, 755-770.	2.7	79
34	Multitemporal UAV Survey for Mass Movement Detection and Monitoring. , 2017, , 153-161.		10
35	Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenvironmental Disasters, 2017, 4, .	1.8	204
36	Remote Sensing Techniques in Landslide Mapping and Monitoring, Keynote Lecture. , 2017, , 1-19.		10

VERONICA TOFANI

#	Article	IF	CITATIONS
37	Advanced Technologies for Landslides (WCoE 2014–2017, IPL-196, IPL-198). , 2017, , 269-277.		Ο
38	Soil Characterization for Landslide Forecasting Models: A Case Study in the Northern Apennines (Central Italy). , 2017, , 381-388.		0
39	Landslide susceptibility of the Prato–Pistoia–Lucca provinces, Tuscany, Italy. Journal of Maps, 2016, 12, 401-406.	1.0	13
40	Subsidence mapping at regional scale using persistent scatters interferometry (PSI): The case of Tuscany region (Italy). International Journal of Applied Earth Observation and Geoinformation, 2016, 52, 328-337.	1.4	44
41	Spatial patterns of landslide dimension: A tool for magnitude mapping. Geomorphology, 2016, 273, 361-373.	1.1	29
42	Integration of multicopter drone measurements and ground-based data for landslide monitoring. , 2016, , 1745-1750.		4
43	Geotechnical in situ measures to improve landslides forecasting models: A case study in Tuscany (Central Italy). , 2016, , 419-424.		12
44	Combination of rainfall thresholds and susceptibility maps in regional-scale landslide warning systems. , 2016, , 1817-1821.		0
45	Radar Technologies for Landslide Detection, Monitoring, Early Warning and Emergency Management. , 2015, , 209-232.		5
46	Modeling debris flows in volcanic terrains for hazard mapping: the case study of Ischia Island (Italy). Landslides, 2015, 12, 831-846.	2.7	28
47	Risk analysis for the Ancona landslide—l: characterization of landslide kinematics. Landslides, 2015, 12, 69-82.	2.7	20
48	Risk analysis for the Ancona landslide—II: estimation of risk to buildings. Landslides, 2015, 12, 83-100.	2.7	49
49	Identification of landslide hazard and risk â€~hotspots' in Europe. Bulletin of Engineering Geology and the Environment, 2014, 73, 325.	1.6	41
50	Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 2014, 73, 209.	1.6	541
51	A Procedure to Map Subsidence at the Regional Scale Using the Persistent Scatterer Interferometry (PSI) Technique. Remote Sensing, 2014, 6, 10510-10522.	1.8	29
52	Integration of Remote Sensing Techniques for Intensity Zonation within a Landslide Area: A Case Study in the Northern Apennines, Italy. Remote Sensing, 2014, 6, 907-924.	1.8	33
53	A new appraisal of the Ancona landslide based on geotechnical investigations and stability modelling. Quarterly Journal of Engineering Geology and Hydrogeology, 2014, 47, 29-43.	0.8	29
54	Quantitative hazard and risk assessment for slow-moving landslides from Persistent Scatterer Interferometry. Landslides, 2014, 11, 685-696.	2.7	94

VERONICA TOFANI

#	Article	IF	CITATIONS
55	Introduction: Remote Sensing Techniques for Landslide Mapping and Monitoring. , 2014, , 301-303.		5
56	Persistent Scatterer Interferometry (PSI) Technique for Landslide Characterization and Monitoring. , 2014, , 351-357.		8
57	GIS techniques for regional-scale landslide susceptibility assessment: the Sicily (Italy) case study. International Journal of Geographical Information Science, 2013, 27, 1433-1452.	2.2	56
58	Brief communication "A prototype forecasting chain for rainfall induced shallow landslides". Natural Hazards and Earth System Sciences, 2013, 13, 771-777.	1.5	47
59	Persistent Scatterer Interferometry (PSI) Technique for Landslide Characterization and Monitoring. Remote Sensing, 2013, 5, 1045-1065.	1.8	233
60	HIRESSS: a physically based slope stability simulator for HPC applications. Natural Hazards and Earth System Sciences, 2013, 13, 151-166.	1.5	124
61	Technical Note: Use of remote sensing for landslide studies in Europe. Natural Hazards and Earth System Sciences, 2013, 13, 299-309.	1.5	115
62	Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Natural Hazards and Earth System Sciences, 2013, 13, 2815-2831.	1.5	444
63	Landslide Susceptibility Mapping at National Scale: The Italian Case Study. , 2013, , 287-295.		48
64	Short Term Weather Forecasting for Shallow Landslide Prediction. , 2013, , 121-129.		2
65	Landslide Characterization Using Satellite Interferometry (PSI), Geotechnical Investigations and Numerical Modelling: The Case Study of Ricasoli Village (Italy). International Journal of Geosciences, 2013, 04, 904-918.	0.2	21
66	Persistent Scatterers Interferometry Hotspot and Cluster Analysis (PSI-HCA) for detection of extremely slow-moving landslides. International Journal of Remote Sensing, 2012, 33, 466-489.	1.3	125
67	A Look from Space. , 2009, , 287-319.		1
68	Infiltration, seepage and slope instability mechanisms during the 20–21 November 2000 rainstorm in Tuscany, central Italy. Natural Hazards and Earth System Sciences, 2006, 6, 1025-1033.	1.5	41
69	Analysis of the landslide triggering mechanism during the storm of 20th–21st November 2000, in Northern Tuscany. Landslides, 2006, 3, 13-21.	2.7	64
70	PSI technique for quantitative hazard and risk assessment of landslides. Rendiconti Online Societa Geologica Italiana, 0, 35, 296-299.	0.3	0