Gary J Bassell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8436446/publications.pdf

Version: 2024-02-01

79 papers	7,321 citations	71102 41 h-index	69250 77 g-index
83 all docs	83 docs citations	83 times ranked	6713 citing authors

#	Article	IF	CITATIONS
1	Diversity on location. ELife, 2022, 11, .	6.0	1
2	Metabolic effects of the schizophrenia-associated 3q29 deletion. Translational Psychiatry, 2022, 12, 66.	4.8	4
3	Mechanisms Driving the Emergence of Neuronal Hyperexcitability in Fragile X Syndrome. International Journal of Molecular Sciences, 2022, 23, 6315.	4.1	5
4	<scp>ALS</scp> â€linked <scp>KIF5A î"Exon27</scp> mutant causes neuronal toxicity through gainâ€ofâ€function. EMBO Reports, 2022, 23, .	4.5	25
5	Behavioral changes and growth deficits in a CRISPR engineered mouse model of the schizophrenia-associated 3q29 deletion. Molecular Psychiatry, 2021, 26, 772-783.	7.9	35
6	TBK1 interacts with tau and enhances neurodegeneration in tauopathy. Journal of Biological Chemistry, 2021, 296, 100760.	3.4	14
7	The M1311V variant of ATP7A is associated with impaired trafficking and copper homeostasis in models of motor neuron disease. Neurobiology of Disease, 2021, 149, 105228.	4.4	12
8	FMRP attenuates activity dependent modifications in the mitochondrial proteome. Molecular Brain, 2021, 14, 75.	2.6	7
9	Cell-type-specific profiling of human cellular models of fragile X syndrome reveal PI3K-dependent defects in translation and neurogenesis. Cell Reports, 2021, 35, 108991.	6.4	36
10	The PI3-Kinase p $110\hat{l}^2$ Isoform Controls Severity of Cocaine-Induced Sequelae and Alters the Striatal Transcriptome. Biological Psychiatry, 2021, 89, 959-969.	1.3	3
11	Convergent and distributed effects of the 3q29 deletion on the human neural transcriptome. Translational Psychiatry, 2021, 11, 357.	4.8	12
12	Mitochondrial Structure and Polarity in Dendrites and the Axon Initial Segment Are Regulated by Homeostatic Plasticity and Dysregulated in Fragile X Syndrome. Frontiers in Cell and Developmental Biology, 2021, 9, 702020.	3.7	4
13	A human forebrain organoid model of fragile X syndrome exhibits altered neurogenesis and highlights new treatment strategies. Nature Neuroscience, 2021, 24, 1377-1391.	14.8	80
14	Remembering Stephen T. Warren, a pillar of neurogenetics (1953–2021). Nature Neuroscience, 2021, 24, 1340-1341.	14.8	0
15	Cdh1-APC Regulates Protein Synthesis and Stress Granules in Neurons through an FMRP-Dependent Mechanism. IScience, 2020, 23, 101132.	4.1	23
16	RNA-mediated toxicity in C9orf72 ALS and FTD. Neurobiology of Disease, 2020, 145, 105055.	4.4	31
17	Divergent FUS phosphorylation in primate and mouse cells following double-strand DNA damage. Neurobiology of Disease, 2020, 146, 105085.	4.4	7
18	Regulation of <scp>RNA</scp> granules by <scp>FMRP</scp> and implications for neurological diseases. Traffic, 2020, 21, 454-462.	2.7	36

#	Article	IF	CITATIONS
19	Hexanucleotide Repeat Expansions in c9FTD/ALS and SCA36 Confer Selective Patterns of Neurodegeneration InÂVivo. Cell Reports, 2020, 31, 107616.	6.4	37
20	Cortical neurons derived from human pluripotent stem cells lacking FMRP display altered spontaneous firing patterns. Molecular Autism, 2020, 11, 52.	4.9	14
21	FUS Recognizes G Quadruplex Structures Within Neuronal mRNAs. Frontiers in Molecular Biosciences, 2020, 7, 6.	3.5	47
22	A native function for RAN translation and CGG repeats in regulating fragile X protein synthesis. Nature Neuroscience, 2020, 23, 386-397.	14.8	48
23	Biased modulators of NMDA receptors control channel opening and ion selectivity. Nature Chemical Biology, 2020, 16, 188-196.	8.0	26
24	CRISPR-mediated gene correction links the ATP7A M1311V mutations with amyotrophic lateral sclerosis pathogenesis in one individual. Communications Biology, 2020, 3, 33.	4.4	6
25	Chimeric Peptide Species Contribute to Divergent Dipeptide Repeat Pathology in c9ALS/FTD and SCA36. Neuron, 2020, 107, 292-305.e6.	8.1	51
26	FMRP promotes RNA localization to neuronal projections through interactions between its RGG domain and G-quadruplex RNA sequences. ELife, 2020, 9, .	6.0	89
27	Isoform-selective phosphoinositide 3-kinase inhibition ameliorates a broad range of fragile X syndrome-associated deficits in a mouse model. Neuropsychopharmacology, 2019, 44, 324-333.	5.4	37
28	FMRP - G-quadruplex mRNA - miR-125a interactions: Implications for miR-125a mediated translation regulation of PSD-95 mRNA. PLoS ONE, 2019, 14, e0217275.	2.5	25
29	Homeostatic Intrinsic Plasticity Is Functionally Altered in Fmr1 KO Cortical Neurons. Cell Reports, 2019, 26, 1378-1388.e3.	6.4	38
30	Crosstalk of Local Translation and Mitochondria: Powering Plasticity in Axons and Dendrites. Neuron, 2019, 101, 204-206.	8.1	23
31	Aberrant RNA translation in fragile X syndrome: From FMRP mechanisms to emerging therapeutic strategies. Brain Research, 2018, 1693, 24-36.	2.2	94
32	microRNAs Sculpt Neuronal Communication in a Tight Balance That Is Lost in Neurological Disease. Frontiers in Molecular Neuroscience, 2018, 11, 455.	2.9	47
33	The Survival of Motor Neuron Protein Acts as a Molecular Chaperone for mRNP Assembly. Cell Reports, 2017, 18, 1660-1673.	6.4	58
34	Fragile X mental retardation protein recognizes a G quadruplex structure within the survival motor neuron domain containing 1 mRNA $5\hat{a}\in^2$ -UTR. Molecular BioSystems, 2017, 13, 1448-1457.	2.9	13
35	ZBP1 phosphorylation at serine 181 regulates its dendritic transport and the development of dendritic trees of hippocampal neurons. Scientific Reports, 2017, 7, 1876.	3.3	31
36	Spatially and temporally regulating translation via <scp>mRNA</scp> â€binding proteins in cellular and neuronal function. FEBS Letters, 2017, 591, 1508-1525.	2.8	27

#	Article	IF	Citations
37	The Conserved, Disease-Associated RNA Binding Protein dNab2 Interacts with the Fragile X Protein Ortholog in Drosophila Neurons. Cell Reports, 2017, 20, 1372-1384.	6.4	29
38	Familiarity with a vocal category biases the compartmental expression of <i>Arc/Arg3.1</i> in core auditory cortex. Learning and Memory, 2017, 24, 612-621.	1.3	3
39	The RNA-binding protein, ZC3H14, is required for proper poly(A) tail length control, expression of synaptic proteins, and brain function in mice. Human Molecular Genetics, 2017, 26, 3663-3681.	2.9	31
40	Identification of consensus binding sites clarifies FMRP binding determinants. Nucleic Acids Research, 2016, 44, 6649-6659.	14.5	54
41	Deficiency of the Survival of Motor Neuron Protein Impairs mRNA Localization and Local Translation in the Growth Cone of Motor Neurons. Journal of Neuroscience, 2016, 36, 3811-3820.	3.6	138
42	A role for the survival of motor neuron protein in mRNP assembly and transport. Current Opinion in Neurobiology, 2016, 39, 53-61.	4.2	67
43	Trehalose upregulates progranulin expression in human and mouse models of GRN haploinsufficiency: a novel therapeutic lead to treat frontotemporal dementia. Molecular Neurodegeneration, 2016, 11, 46.	10.8	82
44	MicroRNA-Mediated Downregulation of the Potassium Channel Kv4.2 Contributes to Seizure Onset. Cell Reports, 2016, 17, 37-45.	6.4	71
45	Dysregulation of mRNA Localization and Translation in Genetic Disease. Journal of Neuroscience, 2016, 36, 11418-11426.	3.6	89
46	hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting <i>Gap-43 </i> mrnA translation. Molecular Biology of the Cell, 2016, 27, 518-534.	2.1	41
47	Therapeutic Strategies in Fragile X Syndrome: From Bench to Bedside and Back. Neurotherapeutics, 2015, 12, 584-608.	4.4	88
48	Increased Expression of the PI3K Enhancer PIKE Mediates Deficits in Synaptic Plasticity and Behavior in Fragile X Syndrome. Cell Reports, 2015, 11, 727-736.	6.4	97
49	Single-Molecule Imaging of PSD-95 mRNA Translation in Dendrites and Its Dysregulation in a Mouse Model of Fragile X Syndrome. Journal of Neuroscience, 2015, 35, 7116-7130.	3.6	84
50	Fragile X mental retardation protein interactions with a G quadruplex structure in the $3\hat{a} \in \mathbb{R}^2$ -untranslated region of NR2B mRNA. Molecular BioSystems, 2015, 11, 3222-3230.	2.9	28
51	Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nature Reviews Neuroscience, 2015, 16, 595-605.	10.2	231
52	Selective Role of the Catalytic PI3K Subunit p $110\hat{l}^2$ in Impaired Higher Order Cognition in Fragile X Syndrome. Cell Reports, 2015, 11, 681-688.	6.4	72
53	A 3′ untranslated region variant in <i>FMR1</i> eliminates neuronal activity-dependent translation of FMRP by disrupting binding of the RNA-binding protein HuR. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6553-61.	7.1	33
54	G quadruplex RNA structures in PSD-95 mRNA: potential regulators of miR-125a seed binding site accessibility. Rna, 2015, 21, 48-60.	3.5	52

#	Article	IF	CITATIONS
55	Neuron-specific regulation of class I PI3K catalytic subunits and their dysfunction in brain disorders. Frontiers in Molecular Neuroscience, 2014, 7, 12.	2.9	47
56	FMRP interacts with G-quadruplex structures in the $3\hat{a}$ € [™] -UTR of its dendritic target Shank1 mRNA. RNA Biology, 2014, 11, 1364-1374.	3.1	51
57	Dynamics of survival of motor neuron (SMN) protein interaction with the mRNAâ€binding protein IMP1 facilitates its trafficking into motor neuron axons. Developmental Neurobiology, 2014, 74, 319-332.	3.0	89
58	Analysis of FMRP mRNA target datasets reveals highly associated mRNAs mediated by G-quadruplex structures formed via clustered WGGA sequences. Human Molecular Genetics, 2014, 23, 5479-5491.	2.9	75
59	Genetic and acute CPEB1 depletion ameliorate fragile X pathophysiology. Nature Medicine, 2013, 19, 1473-1477.	30.7	115
60	Dephosphorylation-Induced Ubiquitination and Degradation of FMRP in Dendrites: A Role in Immediate Early mGluR-Stimulated Translation. Journal of Neuroscience, 2012, 32, 2582-2587.	3.6	116
61	Negative regulation of RhoA translation and signaling by hnRNP-Q1 affects cellular morphogenesis. Molecular Biology of the Cell, 2012, 23, 1500-1509.	2.1	42
62	Excess Protein Synthesis in FXS Patient Lymphoblastoid Cells Can Be Rescued with a p $110\hat{l}^2$ -Selective Inhibitor. Molecular Medicine, 2012, 18, 336-345.	4.4	63
63	IMP2 Expression In The Mouse Nervous System. FASEB Journal, 2012, 26, lb60.	0.5	0
64	Mutation of the conserved polyadenosine RNA binding protein, ZC3H14/dNab2, impairs neural function in $\langle i \rangle$ Drosophila $\langle j \rangle$ and humans. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12390-12395.	7.1	77
65	Reversible Inhibition of PSD-95 mRNA Translation by miR-125a, FMRP Phosphorylation, and mGluR Signaling. Molecular Cell, 2011, 42, 673-688.	9.7	338
66	Automated 4D analysis of dendritic spine morphology: applications to stimulus-induced spine remodeling and pharmacological rescue in a disease model. Molecular Brain, 2011, 4, 38.	2.6	71
67	Fragile X Mental Retardation Protein Regulates Protein Expression and mRNA Translation of the Potassium Channel Kv4.2. Journal of Neuroscience, 2011, 31, 5693-5698.	3.6	145
68	Excess Phosphoinositide 3-Kinase Subunit Synthesis and Activity as a Novel Therapeutic Target in Fragile X Syndrome. Journal of Neuroscience, 2010, 30, 10624-10638.	3.6	219
69	Fragile X Mental Retardation Protein is involved in protein synthesis-dependent collapse of growth cones induced by Semaphorin-3A. Frontiers in Neural Circuits, 2009, 3, 11.	2.8	61
70	Fragile X Syndrome: Loss of Local mRNA Regulation Alters Synaptic Development and Function. Neuron, 2008, 60, 201-214.	8.1	935
71	A Direct Role for FMRP in Activity-Dependent Dendritic mRNA Transport Links Filopodial-Spine Morphogenesis to Fragile X Syndrome. Developmental Cell, 2008, 14, 926-939.	7. 0	445
72	S6K1 Phosphorylates and Regulates Fragile X Mental Retardation Protein (FMRP) with the Neuronal Protein Synthesis-dependent Mammalian Target of Rapamycin (mTOR) Signaling Cascade. Journal of Biological Chemistry, 2008, 283, 18478-18482.	3.4	184

#	Article	IF	CITATION
73	FMRP Phosphorylation Reveals an Immediate-Early Signaling Pathway Triggered by Group I mGluR and Mediated by PP2A. Journal of Neuroscience, 2007, 27, 14349-14357.	3.6	198
74	Fragile X mental retardation protein deficiency leads to excessive mGluR5-dependent internalization of AMPA receptors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15537-15542.	7.1	220
75	Dysregulated Metabotropic Glutamate Receptor-Dependent Translation of AMPA Receptor and Postsynaptic Density-95 mRNAs at Synapses in a Mouse Model of Fragile X Syndrome. Journal of Neuroscience, 2007, 27, 5338-5348.	3.6	380
76	Local functions for FMRP in axon growth cone motility and activity-dependent regulation of filopodia and spine synapses. Molecular and Cellular Neurosciences, 2006, 32, 37-48.	2.2	231
77	Neuronal RNA Granules: Movers and Makers. Neuron, 2006, 51, 685-690.	8.1	514
78	RNA exodus to Israel: RNA controlling function in the far reaches of the neuron. EMBO Reports, 2006, 7, 31-35.	4.5	13
79	Metabotropic Glutamate Receptor Activation Regulates Fragile X Mental Retardation Protein and Fmr1 mRNA Localization Differentially in Dendrites and at Synapses. Journal of Neuroscience, 2004, 24, 2648-2655.	3.6	348