Antonina Roll-Mecak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8436310/publications.pdf

Version: 2024-02-01

49 papers

4,149 citations

32 h-index 197818 49 g-index

68 all docs

68
docs citations

68 times ranked 4001 citing authors

#	Article	IF	CITATIONS
1	ER proteins decipher the tubulin code to regulate organelle distribution. Nature, 2022, 601, 132-138.	27.8	75
2	Phosphinic acid-based inhibitors of tubulin polyglycylation. Chemical Communications, 2022, 58, 6530-6533.	4.1	1
3	A look under the hood of the machine that makes cilia beat. Nature Structural and Molecular Biology, 2022, 29, 416-418.	8.2	1
4	Editorial overview: Microtubules in nervous system development. Developmental Neurobiology, 2021, 81, 229-230.	3.0	1
5	α-tubulin tail modifications regulate microtubule stability through selective effector recruitment, not changes in intrinsic polymer dynamics. Developmental Cell, 2021, 56, 2016-2028.e4.	7.0	55
6	Katanin Grips the \hat{l}^2 -Tubulin Tail through an Electropositive Double Spiral to Sever Microtubules. Developmental Cell, 2020, 52, 118-131.e6.	7.0	58
7	Mechanisms of microtubule dynamics and force generation examined with computational modeling and electron cryotomography. Nature Communications, 2020, 11, 3765.	12.8	47
8	Structural basis for polyglutamate chain initiation and elongation by TTLL family enzymes. Nature Structural and Molecular Biology, 2020, 27, 802-813.	8.2	35
9	The Tubulin Code in Microtubule Dynamics and Information Encoding. Developmental Cell, 2020, 54, 7-20.	7.0	163
10	In Vitro Reconstitution Assays of Microtubule Amplification and Lattice Repair by the Microtubule-Severing Enzymes Katanin and Spastin. Methods in Molecular Biology, 2020, 2101, 27-38.	0.9	3
11	In Vitro Microtubule Dynamics Assays Using Dark-Field Microscopy. Methods in Molecular Biology, 2020, 2101, 39-51.	0.9	5
12	An allosteric network in spastin couples multiple activities required for microtubule severing. Nature Structural and Molecular Biology, 2019, 26, 671-678.	8.2	51
13	A Microtubule-Myelination Connection. Cell, 2019, 179, 54-56.	28.9	5
14	Watching microtubules grow one tubulin at a time. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7163-7165.	7.1	5
15	Structural determinants of microtubule minus end preference in CAMSAP CKK domains. Nature Communications, 2019, 10, 5236.	12.8	36
16	How cells exploit tubulin diversity to build functional cellular microtubule mosaics. Current Opinion in Cell Biology, 2019, 56, 102-108.	5.4	70
17	The tubulin code in neuronal polarity. Current Opinion in Neurobiology, 2018, 51, 95-102.	4.2	47
18	Microtubule-severing enzymes: From cellular functions to molecular mechanism. Journal of Cell Biology, 2018, 217, 4057-4069.	5.2	135

#	Article	IF	CITATIONS
19	Severing enzymes amplify microtubule arrays through lattice GTP-tubulin incorporation. Science, 2018, 361, .	12.6	180
20	Crystal structure of tubulin tyrosine ligase-like 3 reveals essential architectural elements unique to tubulin monoglycylases. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6545-6550.	7.1	19
21	Tubulin isoform composition tunes microtubule dynamics. Molecular Biology of the Cell, 2017, 28, 3564-3572.	2.1	146
22	Katanin spiral and ring structures shed light on power stroke for microtubule severing. Nature Structural and Molecular Biology, 2017, 24, 717-725.	8.2	97
23	Loss of RPGR glutamylation underlies the pathogenic mechanism of retinal dystrophy caused by <i>TTLL5</i> mutations. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2925-34.	7.1	79
24	Data publication with the structural biology data grid supports live analysis. Nature Communications, 2016, 7, 10882.	12.8	113
25	Structure and Dynamics of Single-isoform Recombinant Neuronal Human Tubulin. Journal of Biological Chemistry, 2016, 291, 12907-12915.	3.4	111
26	Graded Control of Microtubule Severing by Tubulin Glutamylation. Cell, 2016, 164, 911-921.	28.9	198
27	Intrinsically disordered tubulin tails: complex tuners of microtubule functions?. Seminars in Cell and Developmental Biology, 2015, 37, 11-19.	5.0	90
28	Writing and Reading the Tubulin Code. Journal of Biological Chemistry, 2015, 290, 17163-17172.	3.4	166
29	Multivalent Microtubule Recognition by Tubulin Tyrosine Ligase-like Family Glutamylases. Cell, 2015, 161, 1112-1123.	28.9	83
30	Generation of Differentially Modified Microtubules Using In Vitro Enzymatic Approaches. Methods in Enzymology, 2014, 540, 149-166.	1.0	35
31	Molecular Basis for Age-Dependent Microtubule Acetylation by Tubulin Acetyltransferase. Cell, 2014, 157, 1405-1415.	28.9	181
32	Shining Light at Microtubule Crossroads. Science, 2013, 342, 1180-1181.	12.6	4
33	Tubulin Tyrosine Ligase and Stathmin Compete for Tubulin Binding In Vitro. Journal of Molecular Biology, 2013, 425, 2412-2414.	4.2	13
34	Phosphinic acid-based inhibitors of tubulin polyglutamylases. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4408-4412.	2.2	12
35	In Vitro Microtubule Severing Assays. Methods in Molecular Biology, 2013, 1046, 323-334.	0.9	16
36	Crystal Structures of Tubulin Acetyltransferase Reveal a Conserved Catalytic Core and the Plasticity of the Essential N Terminus. Journal of Biological Chemistry, 2012, 287, 41569-41575.	3.4	32

#	Article	IF	Citations
37	The chemical complexity of cellular microtubules: Tubulin postâ€translational modification enzymes and their roles in tuning microtubule functions. Cytoskeleton, 2012, 69, 442-463.	2.0	144
38	Tubulin tyrosine ligase structure reveals adaptation of an ancient fold to bind and modify tubulin. Nature Structural and Molecular Biology, 2011, 18, 1250-1258.	8.2	114
39	Microtubule-severing enzymes. Current Opinion in Cell Biology, 2010, 22, 96-103.	5.4	258
40	Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin. Nature, 2008, 451, 363-367.	27.8	299
41	Making more microtubules by severing: a common theme of noncentrosomal microtubule arrays?. Journal of Cell Biology, 2006, 175, 849-851.	5.2	89
42	The Drosophila Homologue of the Hereditary Spastic Paraplegia Protein, Spastin, Severs and Disassembles Microtubules. Current Biology, 2005, 15, 650-655.	3.9	175
43	Structural Basis for Autoinhibition and Mutational Activation of Eukaryotic Initiation Factor 2α Protein Kinase GCN2*[boxs]. Journal of Biological Chemistry, 2005, 280, 29289-29299.	3.4	100
44	X-ray Structure of Translation Initiation Factor elF2 \hat{I}^3 . Journal of Biological Chemistry, 2004, 279, 10634-10642.	3.4	73
45	Uncoupling of Initiation Factor eIF5B/IF2 GTPase and Translational Activities by Mutations that Lower Ribosome Affinity. Cell, 2002, 111, 1015-1025.	28.9	123
46	X-ray structure of Saccharomyces cerevisiae homologous mitochondrial matrix factor 1 (Hmf1). Proteins: Structure, Function and Bioinformatics, 2002, 48, 431-436.	2.6	22
47	Engaging the ribosome: universal IFs of translation. Trends in Biochemical Sciences, 2001, 26, 705-709.	7.5	71
48	Physical and Functional Interaction between the Eukaryotic Orthologs of Prokaryotic Translation Initiation Factors IF1 and IF2. Molecular and Cellular Biology, 2000, 20, 7183-7191.	2.3	84
49	X-Ray Structures of the Universal Translation Initiation Factor IF2/eIF5B. Cell, 2000, 103, 781-792.	28.9	227