Matteo Valt

List of Publications by Citations

Source: https://exaly.com/author-pdf/8436215/matteo-valt-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28 167 9 12 g-index

45 244 3.4 2.59 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
28	ZnO and Au/ZnO thin films: Room-temperature chemoresistive properties for gas sensing applications. <i>Sensors and Actuators B: Chemical</i> , 2016 , 237, 1085-1094	8.5	39
27	Development of MEMS MOS gas sensors with CMOS compatible PECVD inter-metal passivation. Sensors and Actuators B: Chemical, 2019 , 292, 225-232	8.5	18
26	Tunable formation of nanostructured SiC/SiOC core-shell for selective detection of SO2. <i>Sensors and Actuators B: Chemical</i> , 2020 , 305, 127485	8.5	16
25	Reproducibility tests with zinc oxide thick-film sensors. <i>Ceramics International</i> , 2020 , 46, 6847-6855	5.1	16
24	Correlation of gaseous emissions to water stress in tomato and maize crops: From field to laboratory and back. <i>Sensors and Actuators B: Chemical</i> , 2020 , 303, 127227	8.5	13
23	Aza-crown-ether functionalized graphene oxide for gas sensing and cation trapping applications. <i>Materials Research Express</i> , 2019 , 6, 075603	1.7	12
22	Nanostructured SmFeO Gas Sensors: Investigation of the Gas Sensing Performance Reproducibility for Colorectal Cancer Screening. <i>Sensors</i> , 2020 , 20,	3.8	10
21	Air Stable Nickel-Decorated Black Phosphorus and Its Room-Temperature Chemiresistive Gas Sensor Capabilities. <i>ACS Applied Materials & Mat</i>	9.5	10
20	Chemoresistive Gas Sensor based on SiC Thick Film: Possible Distinctive Sensing Properties Between H2S and SO2. <i>Procedia Engineering</i> , 2016 , 168, 276-279		9
19	Development and characterization of WO3 nanoflakes for selective ethanol sensing. <i>Sensors and Actuators B: Chemical</i> , 2021 , 347, 130593	8.5	6
18	Nanostructured Chemoresistive Sensors for Oncological Screening and Tumor Markers Tracking: Single Sensor Approach Applications on Human Blood and Cell Samples. <i>Sensors</i> , 2020 , 20,	3.8	4
17	Design and validation of a novel operando spectroscopy reaction chamber for chemoresistive gas sensors. <i>Sensors and Actuators B: Chemical</i> , 2021 , 341, 130012	8.5	3
16	Chemoresistive Nanostructured Sensors for Tumor Pre-Screening. <i>Proceedings (mdpi)</i> , 2019 , 14, 29	0.3	2
15	Nanostructured Chemoresistive Sensors for Oncological Screening: Preliminary Study with Single Sensor Approach on Human Blood Samples. <i>Proceedings (mdpi)</i> , 2019 , 14, 34	0.3	1
14	Influence of Oxygen Vacancies in Gas Sensors Based on Metal-Oxide Semiconductors: A First-Principles Study. <i>Lecture Notes in Electrical Engineering</i> , 2020 , 309-314	0.2	1
13	First-Principles Study of Electronic Conductivity, Structural and Electronic Properties of Oxygen-Vacancy-Defected SnO[] <i>Journal of Nanoscience and Nanotechnology</i> , 2021 , 21, 2633-2640	1.3	1
12	Synthesis, Material and Electrical Characterization Combined with DFT Calculations of Reduced SnO2-x. <i>ECS Meeting Abstracts</i> , 2021 , MA2021-01, 1492-1492	O	1

LIST OF PUBLICATIONS

11	A New Method to Prepare Few-Layers of Nanoclusters Decorated Graphene: Nb2O5/Graphene and Its Gas Sensing Properties. <i>Proceedings (mdpi)</i> , 2018 , 2, 1047	0.3	1
10	Development of a dedicated instrumentation for electrical and thermal characterization of chemiresistive gas sensors. <i>Review of Scientific Instruments</i> , 2021 , 92, 074702	1.7	1
9	Elucidating the Ambient Stability and Gas Sensing Mechanism of Nickel-Decorated Phosphorene for NO Detection: A First-Principles Study <i>ACS Omega</i> , 2022 , 7, 9808-9817	3.9	1
8	The role of substrate materials on stabilization of CdO, 2CdOICdSO4 and 2CdSI2CdOICdSO4 from CdS powder film annealed in air. <i>Materials Chemistry and Physics</i> , 2021 , 257, 123251	4.4	0
7	Elaboration and Characterization of SnO2 Doped TiO2 Gas Sensors Deposited through Dip and Spin Coating Methods. <i>Proceedings (mdpi)</i> , 2019 , 14, 23	0.3	
6	Influence of Oxygen Vacancies in Gas Sensors Based on Tin Dioxide Nanostructure: A First Principles Study. <i>Proceedings (mdpi)</i> , 2019 , 14, 14	0.3	
5	Silicon Carbide: A Gas Sensing Material for Selective Detection of SO2. <i>Proceedings (mdpi)</i> , 2017 , 1, 745	0.3	
4	On the Optimization of a MEMS Device for Chemoresistive Gas Sensors. <i>Proceedings (mdpi)</i> , 2017 , 1, 746	50.3	
3	Sustainable Water Management: Sensors for Precision Farming. Proceedings (mdpi), 2017, 1, 780	0.3	
2	Detection of Tumor Markers and Cell Metabolites in Cell Cultures, Using Nanostructured Chemoresistive Sensors. <i>Lecture Notes in Electrical Engineering</i> , 2018 , 51-58	0.2	
1	Glyphosate Detection: An Innovative Approach by Using Chemoresistive Gas Sensors. <i>Proceedings</i> (mdpi), 2018 , 2, 910	0.3	