
Carla Boccaccio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8435914/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	METâ^†14 promotes a ligand-dependent, AKT-driven invasive growth. Life Science Alliance, 2022, 5, e202201409.	2.8	7
2	Cancer of unknown primary stem-like cells model multi-organ metastasis and unveil liability to MEK inhibition. Nature Communications, 2021, 12, 2498.	12.8	20
3	ERBB3 overexpression due to miR-205 inactivation confers sensitivity to FGF, metabolic activation, and liability to ERBB3 targeting in glioblastoma. Cell Reports, 2021, 36, 109455.	6.4	18
4	ERBB3 as a therapeutic target in glioblastoma: overexpression can make the difference. Molecular and Cellular Oncology, 2021, 8, 1990677.	0.7	2
5	The Long-Lasting Protective Effect of HGF in Cardiomyoblasts Exposed to Doxorubicin Requires a Positive Feed-Forward Loop Mediated by Erk1,2-Timp1-Stat3. International Journal of Molecular Sciences, 2020, 21, 5258.	4.1	5
6	Colorectal cancer residual disease at maximal response to EGFR blockade displays a druggable Paneth cell–like phenotype. Science Translational Medicine, 2020, 12, .	12.4	40
7	A simplified integrated molecular and immunohistochemistry-based algorithm allows high accuracy prediction of glioblastoma transcriptional subtypes. Laboratory Investigation, 2020, 100, 1330-1344.	3.7	12
8	Activation of the <scp>MET</scp> receptor attenuates doxorubicinâ€induced cardiotoxicity in vivo and in vitro. British Journal of Pharmacology, 2020, 177, 3107-3122.	5.4	20
9	Cerebrospinal fluid tumor DNA for liquid biopsy in glioma patients' management: Close to the clinic?. Critical Reviews in Oncology/Hematology, 2020, 146, 102879.	4.4	17
10	Cancer of Unknown Primary (<scp>CUP</scp>): genetic evidence for a novel nosological entity? A case report. EMBO Molecular Medicine, 2020, 12, e11756.	6.9	10
11	"Metastatic Cancer of Unknown Primary―or "Primary Metastatic Cancer�. Frontiers in Oncology, 2019, 9, 1546.	2.8	35
12	Known and novel roles of the MET oncogene in cancer: a coherent approach to targeted therapy. Nature Reviews Cancer, 2018, 18, 341-358.	28.4	248
13	A Molecularly Annotated Model of Patient-Derived Colon Cancer Stem–Like Cells to Assess Genetic and Nongenetic Mechanisms of Resistance to Anti-EGFR Therapy. Clinical Cancer Research, 2018, 24, 807-820.	7.0	23
14	Selective analysis of cancer-cell intrinsic transcriptional traits defines novel clinically relevant subtypes of colorectal cancer. Nature Communications, 2017, 8, 15107.	12.8	213
15	Genetic Evolution of Glioblastoma Stem-Like Cells From Primary to Recurrent Tumor. Stem Cells, 2017, 35, 2218-2228.	3.2	47
16	<scp>MET</scp> inhibition overcomes radiation resistance of glioblastoma stemâ€like cells. EMBO Molecular Medicine, 2016, 8, 550-568.	6.9	74
17	TNFâ€Î± promotes invasive growth through the MET signaling pathway. Molecular Oncology, 2015, 9, 377-388.	4.6	40
18	MET, a driver of invasive growth and cancer clonal evolution under therapeutic pressure. Current Opinion in Cell Biology, 2014, 31, 98-105.	5.4	35

CARLA BOCCACCIO

#	Article	IF	CITATIONS
19	MET Signaling in Colon Cancer Stem-like Cells Blunts the Therapeutic Response to EGFR Inhibitors. Cancer Research, 2014, 74, 1857-1869.	0.9	120
20	MET-Mediated Resistance to EGFR Inhibitors: An Old Liaison Rooted in Colorectal Cancer Stem Cells. Cancer Research, 2014, 74, 3647-3651.	0.9	30
21	The <i>MET</i> Oncogene in Glioblastoma Stem Cells: Implications as a Diagnostic Marker and a Therapeutic Target. Cancer Research, 2013, 73, 3193-3199.	0.9	56
22	Met signaling regulates growth, repopulating potential and basal cell-fate commitment of mammary luminal progenitors: implications for basal-like breast cancer. Oncogene, 2013, 32, 1428-1440.	5.9	53
23	The MET Oncogene as a Therapeutical Target in Cancer Invasive Growth. Frontiers in Pharmacology, 2012, 3, 164.	3.5	14
24	The <i>MET</i> Oncogene Is a Functional Marker of a Glioblastoma Stem Cell Subtype. Cancer Research, 2012, 72, 4537-4550.	0.9	120
25	Wild-type p53 controls cell motility and invasion by dual regulation of MET expression. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14240-14245.	7.1	113
26	Induction of MET by Ionizing Radiation and Its Role in Radioresistance and Invasive Growth of Cancer. Journal of the National Cancer Institute, 2011, 103, 645-661.	6.3	300
27	Hepatocyte Growth Factor: A marker and a player in disseminated intravascular coagulation. Thrombosis Research, 2011, 127, 67-69.	1.7	15
28	Tumor cell-derived Timp-1 is necessary for maintaining metastasis-promoting Met-signaling via inhibition of Adam-10. Clinical and Experimental Metastasis, 2011, 28, 793-802.	3.3	49
29	A Disintegrin and Metalloproteinase-10 (ADAM-10) Mediates DN30 Antibody-induced Shedding of the Met Surface Receptor. Journal of Biological Chemistry, 2010, 285, 26335-26340.	3.4	61
30	Profiling YB-1 target genes uncovers a new mechanism for MET receptor regulation in normal and malignant human mammary cells. Oncogene, 2009, 28, 1421-1431.	5.9	81
31	Genetic Link Between Cancer and Thrombosis. Journal of Clinical Oncology, 2009, 27, 4827-4833.	1.6	63
32	Fibroblast nemosis arrests growth and induces differentiation of human leukemia cells. International Journal of Cancer, 2008, 122, 1243-1252.	5.1	28
33	Oncogenes, Cancer and Hemostasis. , 2007, , 1-15.		1
34	Scatter Factors in Tumor Progression. , 2006, , 111-142.		0
35	Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nature Reviews Cancer, 2006, 6, 637-645.	28.4	492
36	Cancer and blood coagulation. Cellular and Molecular Life Sciences, 2006, 63, 1024-1027.	5.4	37

CARLA BOCCACCIO

#	Article	IF	CITATIONS
37	The MET oncogene drives a genetic programme linking cancer to haemostasis. Nature, 2005, 434, 396-400.	27.8	245
38	A Functional Role for Hemostasis in Early Cancer Development: Figure 1 Cancer Research, 2005, 65, 8579-8582.	0.9	39
39	Interactions between growth factor receptors and adhesion molecules: breaking the rules. Current Opinion in Cell Biology, 2003, 15, 565-571.	5.4	240
40	A differentiation switch for genetically modified hepatocytes. FASEB Journal, 2002, 16, 1-18.	0.5	15
41	Scatter factors and invasive growth. Seminars in Cancer Biology, 2001, 11, 153-165.	9.6	112
42	Apoptosis Enhancement by the HIV-1 Nef Protein. Journal of Immunology, 2001, 166, 81-88.	0.8	91
43	Hepatocyte Growth Factor Is a Regulator of Monocyte-Macrophage Function. Journal of Immunology, 2001, 166, 1241-1247.	0.8	129
44	HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity. FASEB Journal, 2000, 14, 1629-1640.	0.5	88
45	HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity. FASEB Journal, 2000, 14, 1629-1640.	0.5	90
46	Plasminogen-Related Growth Factor and Semaphorin Receptors: A Gene Superfamily Controlling Invasive Growth. Experimental Cell Research, 1999, 253, 88-99.	2.6	61
47	Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature, 1998, 391, 285-288.	27.8	485
48	The HIV-1 Nef Protein Interferes with Phosphatidylinositol 3-Kinase Activation 1. Journal of Biological Chemistry, 1996, 271, 6590-6593.	3.4	55
49	Ligand-Independent Tyrosine Phosphorylation of the Receptor Encoded by thec-neuOncogene. Growth Factors, 1991, 5, 233-242.	1.7	5