Yan Yan Shery Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8435376/publications.pdf Version: 2024-02-01

331538 289141 45 2,203 21 40 citations g-index h-index papers 49 49 49 3818 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	100 m min ^{â^'1} Industrialâ€5cale Flexographic Printing of Grapheneâ€Incorporated Conduc Ink. Advanced Engineering Materials, 2022, 24, 2101217.	tive 1.6	7
2	3D Printing of Liquid Crystalline Hydroxypropyl Cellulose—toward Tunable and Sustainable Volumetric Photonic Structures. Advanced Functional Materials, 2022, 32, .	7.8	38
3	Cancer cell migration on straight, wavy, loop and grid microfibre patterns. Biofabrication, 2022, 14, 024102.	3.7	8
4	Advances and innovations in electrospinning technology. , 2021, , 45-81.		9
5	On-chip perivascular <i>niche</i> supporting stemness of patient-derived glioma cells in a serum-free, flowable culture. Lab on A Chip, 2021, 21, 2343-2358.	3.1	19
6	Guided Assembly and Patterning of Intrinsically Fluorescent Amyloid Fibers with Long-Range Order. Nano Letters, 2021, 21, 938-945.	4.5	8
7	Bioâ€assembling Macroâ€Scale, Lumenized Airway Tubes of Defined Shape via Multiâ€Organoid Patterning and Fusion. Advanced Science, 2021, 8, 2003332.	5.6	22
8	Guided assembly of cancer ellipsoid on suspended hydrogel microfibers estimates multi-cellular traction force. Physical Biology, 2021, 18, 036001.	0.8	2
9	Low-Voltage Continuous Electrospinning: A Versatile Protocol for Patterning Nano- and Micro-Scaled Fibers for Cell Interface. Methods in Molecular Biology, 2021, 2147, 125-135.	0.4	2
10	3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients. Nature Communications, 2021, 12, 6260.	5.8	19
11	Acoustic Sensors: Broad Bandwidth, Selfâ€Powered Acoustic Sensor Created by Dynamic Nearâ€Field Electrospinning of Suspended, Transparent Piezoelectric Nanofiber Mesh (Small 28/2020). Small, 2020, 16, 2070157.	5.2	0
12	Additive batch electrospinning patterning of tethered gelatin hydrogel fibres with swelling-induced fibre curling. Additive Manufacturing, 2020, 36, 101456.	1.7	11
13	An empirical model to evaluate the effects of environmental humidity on the formation of wrinkled, creased and porous fibre morphology from electrospinning. Scientific Reports, 2020, 10, 18783.	1.6	6
14	Broad Bandwidth, Selfâ€Powered Acoustic Sensor Created by Dynamic Nearâ€Field Electrospinning of Suspended, Transparent Piezoelectric Nanofiber Mesh. Small, 2020, 16, e2000581.	5.2	36
15	Inflight fiber printing toward array and 3D optoelectronic and sensing architectures. Science Advances, 2020, 6, .	4.7	44
16	Solution Formulation and Rheology for Fabricating Extracellular Matrix-Derived Fibers Using Low-Voltage Electrospinning Patterning. ACS Biomaterials Science and Engineering, 2019, 5, 3676-3684.	2.6	14
17	Fabrication of Designable and Suspended Microfibers via Low-Voltage 3D Micropatterning. ACS Applied Materials & Interfaces, 2019, 11, 19679-19690.	4.0	21
18	Nearâ€Field Electrospinning Patterning Polycaprolactone and Polycaprolactone/Collagen Interconnected Fiber Membrane. Macromolecular Materials and Engineering, 2018, 303, 1700463.	1.7	18

YAN YAN SHERY HUANG

#	Article	IF	CITATIONS
19	Macromol. Mater. Eng. 2/2018. Macromolecular Materials and Engineering, 2018, 303, 1870009.	1.7	Ο
20	Multi-length scale bioprinting towards simulating microenvironmental cues. Bio-Design and Manufacturing, 2018, 1, 77-88.	3.9	34
21	Solution fibre spinning technique for the fabrication of tuneable decellularised matrix-laden fibres and fibrous micromembranes. Acta Biomaterialia, 2018, 78, 111-122.	4.1	27
22	Image-Assisted Microvessel-on-a-Chip Platform for Studying Cancer Cell Transendothelial Migration Dynamics. Scientific Reports, 2018, 8, 12480.	1.6	25
23	Microfluidic on-chip biomimicry for 3D cell culture: a fit-for-purpose investigation from the end user standpoint. Future Science OA, 2017, 3, FSO173.	0.9	38
24	Harnessing Surface-Functionalized Metal–Organic Frameworks for Selective Tumor Cell Capture. Chemistry of Materials, 2017, 29, 8052-8056.	3.2	38
25	Bioprinting of three-dimensional culture models and organ-on-a-chip systems. MRS Bulletin, 2017, 42, 593-599.	1.7	11
26	Low-Voltage Continuous Electrospinning Patterning. ACS Applied Materials & Interfaces, 2016, 8, 32120-32131.	4.0	75
27	Rapid Patterning of 1-D Collagenous Topography as an ECM Protein Fibril Platform for Image Cytometry. PLoS ONE, 2014, 9, e93590.	1.1	25
28	Dynamics of filopodium-like protrusion and endothelial cellular motility on one-dimensional extracellular matrix fibrils. Interface Focus, 2014, 4, 20130060.	1.5	17
29	Mechanics of biological networks: from the cell cytoskeleton to connective tissue. Soft Matter, 2014, 10, 1864.	1.2	150
30	Nanotubes Complexed with DNA and Proteins for Resistive-Pulse Sensing. ACS Nano, 2013, 7, 8857-8869.	7.3	30
31	Spectroscopic characterization of protein-wrapped single-wall carbon nanotubes and quantification of their cellular uptake in multiple cell generations. Nanotechnology, 2013, 24, 265102.	1.3	14
32	Centrifuge Coating for Low-Waste Solution Processing of Transparent Nanostructured Electrodes. IEEE Nanotechnology Magazine, 2013, 12, 874-878.	1.1	0
33	Direct-write conductive fibres for soft electronics. , 2012, , .		Ο
34	Dispersion of Carbon Nanotubes: Mixing, Sonication, Stabilization, and Composite Properties. Polymers, 2012, 4, 275-295.	2.0	517
35	Fabrication and electromechanical characterization of near-field electrospun composite fibers. Nanotechnology, 2012, 23, 105305.	1.3	17
36	Transparent Electrode with a Nanostructured Coating. ACS Nano, 2011, 5, 2082-2089.	7.3	18

YAN YAN SHERY HUANG

#	Article	IF	CITATIONS
37	Dissolving and Aligning Carbon Nanotubes in Thermotropic Liquid Crystals. Langmuir, 2011, 27, 13254-13260.	1.6	55
38	Variation in Carbon Nanotube Polymer Composite Conductivity from the Effects of Processing, Dispersion, Aging and Sample Size. Materials Express, 2011, 1, 315-328.	0.2	9
39	Microâ€Raman spectroscopy of algae: Composition analysis and fluorescence background behavior. Biotechnology and Bioengineering, 2010, 105, 889-898.	1.7	112
40	Tailoring the Electrical Properties of Carbon Nanotube–Polymer Composites. Advanced Functional Materials, 2010, 20, 4062-4068.	7.8	125
41	Dispersion and Alignment of Carbon Nanotubes in Liquid Crystalline Polymers and Elastomers. Advanced Materials, 2010, 22, 3436-3440.	11.1	162
42	Strength of Nanotubes, Filaments, and Nanowires From Sonicationâ€Induced Scission. Advanced Materials, 2009, 21, 3945-3948.	11.1	126
43	Polysiloxane Surfactants for the Dispersion of Carbon Nanotubes in Nonpolar Organic Solvents. Langmuir, 2009, 25, 12325-12331.	1.6	49
44	Dispersion and rheology of carbon nanotubes in polymers. International Journal of Material Forming, 2008, 1, 63-74.	0.9	56
45	Polymers with aligned carbon nanotubes: Active composite materials. Polymer, 2008, 49, 3841-3854.	1.8	186