Hiléia K S Souza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8435358/publications.pdf Version: 2024-02-01

ΗΠΑΘΙΑΚ S SOUZA

#	Article	IF	CITATIONS
1	Natural deep eutectic solvents as green plasticizers for chitosan thermoplastic production with controlled/desired mechanical and barrier properties. Food Hydrocolloids, 2018, 82, 478-489.	5.6	79
2	Electrospinning of agar/PVA aqueous solutions and its relation with rheological properties. Carbohydrate Polymers, 2015, 115, 348-355.	5.1	78
3	A new approach to develop biodegradable films based on thermoplastic pectin. Food Hydrocolloids, 2019, 97, 105175.	5.6	75
4	The role of choline chloride-based deep eutectic solvent and curcumin on chitosan films properties. Food Hydrocolloids, 2018, 81, 456-466.	5.6	71
5	Physicochemical and microstructural properties of composite edible film obtained by complex coacervation between chitosan and whey protein isolate. Food Hydrocolloids, 2021, 113, 106471.	5.6	70
6	Whey protein isolate–chitosan interactions: A calorimetric and spectroscopy study. Thermochimica Acta, 2009, 495, 108-114.	1.2	67
7	Characterization of a chitosan sample extracted from Brazilian shrimps and its application to obtain insoluble complexes with a commercial whey protein isolate. Food Hydrocolloids, 2010, 24, 709-718.	5.6	61
8	Thermo-compression molding of chitosan with a deep eutectic mixture for biofilms development. Green Chemistry, 2016, 18, 1571-1580.	4.6	57
9	Effect of molecular weight and chemical structure on thermal and rheological properties of gelling κ/ι-hybrid carrageenan solutions. Carbohydrate Polymers, 2011, 85, 429-438.	5.1	46
10	Physicochemical Properties of Choline Chloride-Based Deep Eutectic Solvents with Polyols: An Experimental and Theoretical Investigation. ACS Sustainable Chemistry and Engineering, 2020, 8, 18712-18728.	3.2	44
11	Ultrasound-assisted preparation of size-controlled chitosan nanoparticles: Characterization and fabrication of transparent biofilms. Food Hydrocolloids, 2013, 31, 227-236.	5.6	41
12	Choline chloride based ionic liquid analogues as tool for the fabrication of agar films with improved mechanical properties. Carbohydrate Polymers, 2014, 111, 206-214.	5.1	40
13	Rheological and structural characterization of agar/whey proteins insoluble complexes. Carbohydrate Polymers, 2014, 110, 345-353.	5.1	39
14	Effect of Chitosan Degradation on Its Interaction with Î ² -Lactoglobulin. Biomacromolecules, 2011, 12, 1015-1023.	2.6	37
15	Improving agar electrospinnability with choline-based deep eutectic solvents. International Journal of Biological Macromolecules, 2015, 80, 139-148.	3.6	33
16	Site Energy Distribution Function for the Sips Isotherm by the Condensation Approximation Method and Its Application to Characterization of Porous Materials. Journal of Chemical & Engineering Data, 2011, 56, 2218-2224.	1.0	27
17	Edible Chitosan Films and Their Nanosized Counterparts Exhibit Antimicrobial Activity and Enhanced Mechanical and Barrier Properties. Molecules, 2019, 24, 127.	1.7	26
18	Studies on the interactions between bovine β-lactoglobulin and chitosan at the solid–liquid interface. Electrochimica Acta, 2010, 55, 8779-8790.	2.6	21

HILéIA K S SOUZA

#	Article	IF	CITATIONS
19	Aggregation-induced conformational transitions in bovine β-lactoglobulin adsorbed onto open chitosan structures. Soft Matter, 2012, 8, 1190-1201.	1.2	19
20	Tweaking the mechanical and structural properties of colloidal chitosans by sonication. Food Hydrocolloids, 2016, 56, 29-40.	5.6	17
21	Alternative plasticizers for the production of thermo-compressed agar films. International Journal of Biological Macromolecules, 2015, 76, 138-145.	3.6	16
22	Effect of natural deep eutectic solvent and chitosan nanoparticles on physicochemical properties of locust bean gum films. Food Hydrocolloids, 2022, 126, 107460.	5.6	15
23	Chemical/Color Stability and Rheological Properties of Cyanidin-3-Glucoside in Deep Eutectic Solvents as a Gateway to Design Task-Specific Bioactive Compounds. ACS Sustainable Chemistry and Engineering, 2020, 8, 16184-16196.	3.2	12
24	Calf thymus DNA–metal ions interactions: Calorimetric and spectroscopic thermal studies. Thermochimica Acta, 2010, 501, 1-7.	1.2	10
25	On the initial reaction rate of Peleg's model for rehydration kinetics. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42, 278-280.	2.7	9
26	Complexation of WPI and microwave-assisted extracted agars with different physicochemical properties. Carbohydrate Polymers, 2012, 89, 1073-1080.	5.1	7
27	Lanthanide nitrate complexes with 2-azacyclononanone. Journal of Thermal Analysis and Calorimetry, 2007, 87, 433-436.	2.0	4
28	Bis(pentamethylene)urea complexes of the lanthanide nitrates: synthesis, characterization, properties. Journal of Solid State Chemistry, 2003, 171, 242-245.	1.4	3
29	Thermal and kinetic study of nickel trifluoromethanesulphonate, trifluoroacetate and acetate. Journal of Thermal Analysis and Calorimetry, 2008, 93, 959-962.	2.0	3
30	Neodymium and europium complexes with amides and cyclic aminoxides. Journal of Thermal Analysis and Calorimetry, 2004, 75, 623-628.	2.0	1
31	A thermoanalytical study of zinc methanesulfonate urea, imidazole and 2,2-dithiobis(pyridine-N-oxide) complexes. Thermochimica Acta, 2004, 414, 91-94.	1.2	0