Michael D Guiver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8435353/publications.pdf

Version: 2024-02-01

268 papers 25,468 citations

4370 86 h-index 149 g-index

275 all docs

275 docs citations

times ranked

275

11499 citing authors

#	Article	IF	Citations
1	Designing the next generation of proton-exchange membrane fuel cells. Nature, 2021, 595, 361-369.	13.7	1,012
2	Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes. Journal of Membrane Science, 2004, 229, 95-106.	4.1	895
3	Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. Journal of Membrane Science, 2000, 173, 17-34.	4.1	824
4	Polymer nanosieve membranes for CO2-captureÂapplications. Nature Materials, 2011, 10, 372-375.	13.3	732
5	Hydrocarbon-Based Polymer Electrolyte Membranes: Importance of Morphology on Ion Transport and Membrane Stability. Chemical Reviews, 2017, 117, 4759-4805.	23.0	732
6	Advances in high permeability polymer-based membrane materials for CO ₂ separations. Energy and Environmental Science, 2016, 9, 1863-1890.	15.6	612
7	Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs). Progress in Polymer Science, 2011, 36, 1443-1498.	11.8	597
8	Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. Journal of Membrane Science, 2008, 314, 123-133.	4.1	545
9	Advances in high permeability polymeric membrane materials for CO ₂ separations. Energy and Environmental Science, 2012, 5, 7306-7322.	15.6	451
10	Ion Transport by Nanochannels in Ion-Containing Aromatic Copolymers. Macromolecules, 2014, 47, 2175-2198.	2.2	388
11	Nanocrack-regulated self-humidifying membranes. Nature, 2016, 532, 480-483.	13.7	362
12	Aromatic Poly(ether ketone)s with Pendant Sulfonic Acid Phenyl Groups Prepared by a Mild Sulfonation Method for Proton Exchange Membranesâ€. Macromolecules, 2007, 40, 1934-1944.	2.2	348
13	Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK). Journal of Membrane Science, 2004, 233, 93-99.	4.1	337
14	Nanostructured Ionâ€Exchange Membranes for Fuel Cells: Recent Advances and Perspectives. Advanced Materials, 2015, 27, 5280-5295.	11.1	335
15	Sulfonated Poly(aryl ether ketone)s Containing the Hexafluoroisopropylidene Diphenyl Moiety Prepared by Direct Copolymerization, as Proton Exchange Membranes for Fuel Cell Applicationâ€. Macromolecules, 2004, 37, 7960-7967.	2.2	302
16	Polymers of Intrinsic Microporosity Containing Trifluoromethyl and Phenylsulfone Groups as Materials for Membrane Gas Separation. Macromolecules, 2008, 41, 9656-9662.	2.2	281
17	High-Performance Carboxylated Polymers of Intrinsic Microporosity (PIMs) with Tunable Gas Transport Properties. Macromolecules, 2009, 42, 6038-6043.	2.2	256
18	Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1). Journal of Membrane Science, 2010, 346, 280-287.	4.1	247

#	Article	IF	CITATIONS
19	Pure- and mixed-gas permeation properties of a microporous spirobisindane-based ladder polymer (PIM-1). Journal of Membrane Science, 2009, 333, 125-131.	4.1	246
20	Harnessing Filler Materials for Enhancing Biogas Separation Membranes. Chemical Reviews, 2018, 118, 8655-8769.	23.0	239
21	Properties of SPEEK based PEMs for fuel cell application. Catalysis Today, 2003, 82, 213-222.	2.2	234
22	Casting solvent interactions with sulfonated poly(ether ether ketone) during proton exchange membrane fabrication. Journal of Membrane Science, 2003, 219, 113-121.	4.1	230
23	Polymer Rigidity Improves Microporous Membranes. Science, 2013, 339, 284-285.	6.0	223
24	Intrinsically Microporous Soluble Polyimides Incorporating Tröger's Base for Membrane Gas Separation. Macromolecules, 2014, 47, 3254-3262.	2.2	219
25	Toward Improved Conductivity of Sulfonated Aromatic Proton Exchange Membranes at Low Relative Humidity. Chemistry of Materials, 2008, 20, 5636-5642.	3.2	214
26	Fluorene-Based Poly(arylene ether sulfone)s Containing Clustered Flexible Pendant Sulfonic Acids as Proton Exchange Membranes. Macromolecules, 2011, 44, 7296-7306.	2.2	211
27	Highly Conductive Anionâ€Exchange Membranes from Microporous Tröger's Base Polymers. Angewandte Chemie - International Edition, 2016, 55, 11499-11502.	7.2	206
28	Guanidinium-Functionalized Anion Exchange Polymer Electrolytes via Activated Fluorophenyl-Amine Reaction. Chemistry of Materials, 2011, 23, 3795-3797.	3.2	192
29	A highly permeable graphene oxide membrane with fast and selective transport nanochannels for efficient carbon capture. Energy and Environmental Science, 2016, 9, 3107-3112.	15.6	192
30	Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration. Science Advances, 2020, 6, eaaz9184.	4.7	177
31	Highly Fluorinated Comb-Shaped Copolymers as Proton Exchange Membranes (PEMs): Improving PEM Properties Through Rational Design. Advanced Functional Materials, 2006, 16, 1814-1822.	7.8	174
32	Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes. Nature Materials, 2019, 18, 163-168.	13.3	172
33	Phenyltrimethylammonium Functionalized Polysulfone Anion Exchange Membranes. Macromolecules, 2012, 45, 2411-2419.	2.2	167
34	Static protein adsorption, ultrafiltration behavior and cleanability of hydrophilized polysulfone membranes. Journal of Membrane Science, 1999, 158, 63-75.	4.1	166
35	Enhancement of Proton Transport by Nanochannels in Combâ€Shaped Copoly(arylene ether sulfone)s. Angewandte Chemie - International Edition, 2011, 50, 9158-9161.	7.2	157
36	Stable Superhydrophobic Ceramic-Based Carbon Nanotube Composite Desalination Membranes. Nano Letters, 2018, 18, 5514-5521.	4.5	153

#	Article	IF	Citations
37	Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cellsâ-†. Journal of Membrane Science, 2007, 296, 21-28.	4.1	152
38	Comb-Shaped Poly(arylene ether sulfone)s as Proton Exchange Membranes. Macromolecules, 2008, 41, 2126-2134.	2.2	149
39	Tangential flow streaming potential measurements: Hydrodynamic cell characterization and zeta potentials of carboxylated polysulfone membranes. Journal of Membrane Science, 1998, 145, 211-222.	4.1	148
40	Copoly(arylene ether)s Containing Pendant Sulfonic Acid Groups as Proton Exchange Membranes †NRCC Publication No. 50899 Macromolecules, 2009, 42, 957-963.	2.2	144
41	Highly stable anion exchange membranes based on quaternized polypropylene. Journal of Materials Chemistry A, 2015, 3, 12284-12296.	5.2	144
42	Synthesis of Copoly(aryl ether ether nitrile)s Containing Sulfonic Acid Groups for PEM Applicationâ€. Macromolecules, 2005, 38, 3237-3245.	2.2	142
43	Decarboxylation-Induced Cross-Linking of Polymers of Intrinsic Microporosity (PIMs) for Membrane Gas Separation. Macromolecules, 2012, 45, 5134-5139.	2.2	138
44	Fuel cells with an operational range of –20 °C to 200 °C enabled by phosphoric acid-doped intrinsi ultramicroporous membranes. Nature Energy, 2022, 7, 153-162.	cally 19.8	138
45	Polymers of Intrinsic Microporosity Derived from Novel Disulfone-Based Monomers. Macromolecules, 2009, 42, 6023-6030.	2.2	137
46	Azideâ€based Crossâ€Linking of Polymers of Intrinsic Microporosity (PIMs) for Condensable Gas Separation. Macromolecular Rapid Communications, 2011, 32, 631-636.	2.0	136
47	Sulfonated poly(aryl ether ketone)s containing naphthalene moieties obtained by direct copolymerization as novel polymers for proton exchange membranes. Journal of Polymer Science Part A, 2004, 42, 2866-2876.	2.5	134
48	Carbon hollow fiber membranes for a molecular sieve with precise-cutoff ultramicropores for superior hydrogen separation. Nature Communications, 2021, 12, 268.	5.8	133
49	A new class of highly-conducting polymer electrolyte membranes: Aromatic ABA triblock copolymers. Energy and Environmental Science, 2012, 5, 5346-5355.	15.6	131
50	Highly Conductive and Mechanically Stable Imidazole-Rich Cross-Linked Networks for High-Temperature Proton Exchange Membrane Fuel Cells. Chemistry of Materials, 2020, 32, 1182-1191.	3.2	131
51	High-strength, soluble polyimide membranes incorporating Tröger's Base for gas separation. Journal of Membrane Science, 2016, 504, 55-65.	4.1	127
52	Structural characterization and gas-transport properties of brominated matrimid polyimide. Journal of Polymer Science Part A, 2002, 40, 4193-4204.	2.5	126
53	Influence of Intermolecular Interactions on the Observable Porosity in Intrinsically Microporous Polymers. Macromolecules, 2011, 44, 1763-1767.	2.2	124
54	Magnetic field alignment of stable proton-conducting channels in an electrolyte membrane. Nature Communications, 2019, 10, 842.	5.8	123

#	Article	IF	CITATIONS
55	Polymers of Intrinsic Microporosity with Dinaphthyl and Thianthrene Segments. Macromolecules, 2010, 43, 8580-8587.	2.2	121
56	Graphene Oxide Membranes with Heterogeneous Nanodomains for Efficient CO ₂ Separations. Angewandte Chemie - International Edition, 2017, 56, 14246-14251.	7.2	121
57	Linear High Molecular Weight Ladder Polymer via Fast Polycondensation of 5,5′,6,6′â€₹etrahydroxy″,3,3′,3′â€ŧetramethylspirobisindane with 1,4â€Dicyanotetrafluorobenzene Macromolecular Rapid Communications, 2008, 29, 783-788.	2.2.0	120
58	Towards High Conductivity in Anionâ€Exchange Membranes for Alkaline Fuel Cells. ChemSusChem, 2013, 6, 1376-1383.	3.6	120
59	Preparation of ion exchange membranes for fuel cell based on crosslinked poly(vinyl alcohol) with poly(styrene sulfonic acid-co-maleic acid). Journal of Membrane Science, 2006, 281, 156-162.	4.1	118
60	Sulfonation of poly(phthalazinones) with fuming sulfuric acid mixtures for proton exchange membrane materials. Journal of Membrane Science, 2003, 227, 39-50.	4.1	116
61	Synthesis and characterization of poly(aryl ether ketone) copolymers containing (hexafluoroisopropylidene)-diphenol moiety as proton exchange membrane materials. Polymer, 2005, 46, 3257-3263.	1.8	116
62	Synthesis of Poly(arylene ether ether ketone ketone) Copolymers Containing Pendant Sulfonic Acid Groups Bonded to Naphthalene as Proton Exchange Membrane Materialsâ€. Macromolecules, 2004, 37, 6748-6754.	2.2	114
63	Constructing efficient ion nanochannels in alkaline anion exchange membranes by the in situ assembly of a poly(ionic liquid) in metal–organic frameworks. Journal of Materials Chemistry A, 2016, 4, 2340-2348.	5.2	113
64	Practical implementation of bis-six-membered N-cyclic quaternary ammonium cations in advanced anion exchange membranes for fuel cells: Synthesis and durability. Journal of Membrane Science, 2019, 578, 239-250.	4.1	113
65	Synthesis and characterization of sulfonated poly(phthalazinone ether ketone) for proton exchange membrane materials. Journal of Polymer Science Part A, 2003, 41, 497-507.	2.5	112
66	Blend membranes based on sulfonated poly(ether ether ketone) and polysulfone bearing benzimidazole side groups for proton exchange membrane fuel cells. Electrochemistry Communications, 2006, 8, 1386-1390.	2.3	112
67	1,2,3-Triazolium-Based Poly(2,6-Dimethyl Phenylene Oxide) Copolymers as Anion Exchange Membranes. ACS Applied Materials & Diterfaces, 2016, 8, 4651-4660.	4.0	111
68	Phase separation in polysulfone/solvent/water and polyethersulfone/solvent/water systems. Journal of Membrane Science, 1991, 59, 219-227.	4.1	107
69	Durable Sulfonated Poly(arylene sulfide sulfone nitrile)s Containing Naphthalene Units for Direct Methanol Fuel Cells (DMFCs). Macromolecules, 2013, 46, 3452-3460.	2.2	106
70	Membraneâ€Based Olefin/Paraffin Separations. Advanced Science, 2020, 7, 2001398.	5.6	105
71	Linear High Molecular Weight Ladder Polymers by Optimized Polycondensation of Tetrahydroxytetramethylspirobisindane and 1,4-Dicyanotetrafluorobenzene. Macromolecules, 2008, 41, 7411-7417.	2.2	104
72	Polymer Electrolyte Membranes Derived from New Sulfone Monomers with Pendent Sulfonic Acid Groups. Macromolecules, 2010, 43, 9810-9820.	2.2	102

#	Article	IF	CITATIONS
73	Properties of PEMs based on cross-linked sulfonated poly(ether ether ketone). Journal of Membrane Science, 2006, 285, 306-316.	4.1	100
74	Alkaline Anionâ€Exchange Membranes Containing Mobile Ion Shuttles. Advanced Materials, 2016, 28, 3467-3472.	11.1	98
7 5	Synthesis and characterization of carboxylated polysulfones. British Polymer Journal, 1990, 23, 29-39.	0.7	97
76	Tunable Nanochannels along Graphene Oxide/Polymer Core–Shell Nanosheets to Enhance Proton Conductivity. Advanced Functional Materials, 2015, 25, 7502-7511.	7.8	97
77	Low-swelling proton-conducting copoly(aryl ether nitrile)s containing naphthalene structure with sulfonic acid groups meta to the ether linkage. Polymer, 2006, 47, 808-816.	1.8	94
78	Densely Sulfophenylated Segmented Copoly(arylene ether sulfone) Proton Exchange Membranes. Macromolecules, 2011, 44, 4901-4910.	2.2	94
79	Poly(arylene ether sulfone) proton exchange membranes with flexible acid side chains. Journal of Membrane Science, 2012, 405-406, 68-78.	4.1	94
80	Sulfonated copoly(phthalazinone ether ketone nitrile)s as proton exchange membrane materials. Journal of Membrane Science, 2006, 278, 26-34.	4.1	93
81	Effects of Brominating Matrimid Polyimide on the Physical and Gas Transport Properties of Derived Carbon Membranes. Macromolecules, 2005, 38, 10042-10049.	2.2	92
82	Polyethylene-based radiation grafted anion-exchange membranes for alkaline fuel cells. Journal of Membrane Science, 2013, 441, 148-157.	4.1	91
83	Morphological transformation during cross-linking of a highly sulfonated poly(phenylene sulfide) Tj ETQq1 1 0.78	4314 rgBT 15.6	/gyerlock
84	Polymers of intrinsic microporosity (PIMs) substituted with methyl tetrazole. Polymer, 2012, 53, 4367-4372.	1.8	90
85	Influence of silica content in sulfonated poly(arylene ether ether ketone ketone) (SPAEEKK) hybrid membranes on properties for fuel cell application. Polymer, 2006, 47, 7871-7880.	1.8	89
86	Comparison of PEM Properties of Copoly(aryl ether ether nitrile)s Containing Sulfonic Acid Bonded to Naphthalene in Structurally Different Waysâ€. Macromolecules, 2007, 40, 1512-1520.	2.2	89
87	Ultrathin Lowâ€Crystallinity MOF Membranes Fabricated by Interface Layer Polarization Induction. Advanced Materials, 2020, 32, e2002165.	11.1	85
88	Chemical Modification of Polysulfones II: An Efficient Method for Introducing Primary Amine Groups onto the Aromatic Chain. Macromolecules, 1995, 28, 7612-7621.	2.2	82
89	Acid–base blend membranes based on 2-amino-benzimidazole and sulfonated poly(ether ether ketone) for direct methanol fuel cells. Electrochemistry Communications, 2007, 9, 905-910.	2.3	81
90	Bioinspired Ultrastrong Solid Electrolytes with Fast Proton Conduction along 2D Channels. Advanced Materials, 2017, 29, 1605898.	11.1	81

#	Article	IF	CITATIONS
91	High performance nitrile copolymers for polymer electrolyte membrane fuel cells. Journal of Membrane Science, 2008, 321, 199-208.	4.1	79
92	Mechanically Tough, Thermally Rearranged (TR) Random/Block Poly(benzoxazole- <i>co</i> i>-imide) Gas Separation Membranes. Macromolecules, 2015, 48, 5286-5299.	2.2	78
93	Synthesis, cross-linking and carbonization of co-polyimides containing internal acetylene units for gas separation. Journal of Membrane Science, 2007, 302, 254-264.	4.1	77
94	Phase Separation and Water Channel Formation in Sulfonated Block Copolyimide. Journal of Physical Chemistry B, 2010, 114, 12036-12045.	1.2	77
95	Polyamide thin-film composite membranes based on carboxylated polysulfone microporous support membranes for forward osmosis. Journal of Membrane Science, 2013, 445, 220-227.	4.1	76
96	Effect of Isomerism on Molecular Packing and Gas Transport Properties of Poly(benzoxazole- <i>co</i> -imide)s. Macromolecules, 2014, 47, 7947-7957.	2.2	76
97	Recent Insights on Catalyst Layers for Anion Exchange Membrane Fuel Cells. Advanced Science, 2021, 8, e2100284.	5.6	76
98	Robust ultrathin nanoporous MOF membrane with intra-crystalline defects for fast water transport. Nature Communications, 2022, 13, 266.	5.8	76
99	Thin film composite (TFC) membranes with improved thermal stability from sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK). Journal of Membrane Science, 2002, 207, 189-197.	4.1	75
100	Synthesis of highly fluorinated poly(arylene ether)s copolymers for proton exchange membrane materialsa~†. Journal of Membrane Science, 2006, 281, 111-120.	4.1	75
101	Soluble, microporous, Tröger's Base copolyimides with tunable membrane performance for gas separation. Chemical Communications, 2016, 52, 3817-3820.	2.2	75
102	The modification of polysulfone by metalation. Journal of Polymer Science, Polymer Letters Edition, 1988, 26, 123-127.	0.4	74
103	Hydrocarbon/hydrogen mixed-gas permeation properties of PIM-1, an amorphous microporous spirobisindane polymer. Journal of Membrane Science, 2009, 338, 1-4.	4.1	74
104	Poly(aryl ether ketone)s with carboxylic acid groups: synthesis, sulfonation and crosslinking. Journal of Materials Chemistry, 2008, 18, 4675.	6.7	73
105	Direct copolymerization of sulfonated poly(phthalazinone arylene ether)s for proton-exchange-membrane materials. Journal of Polymer Science Part A, 2003, 41, 2731-2742.	2.5	71
106	A clustered sulfonated poly(ether sulfone) based on a new fluorene-based bisphenol monomer. Journal of Materials Chemistry, 2012, 22, 25093.	6.7	71
107	Dimensionally-stable phosphoric acid–doped polybenzimidazoles for high-temperature proton exchange membrane fuel cells. Journal of Power Sources, 2016, 336, 391-400.	4.0	71
108	Functional group polysulphones by bromination-metalation. Polymer, 1989, 30, 1137-1142.	1.8	70

#	Article	lF	CITATIONS
109	Carboxylated polysulfone membranes having a chiral recognition site induced by an alternative molecular imprinting technique. Polymer Bulletin, 1998, 40, 517-524.	1.7	70
110	Acid–base blend membranes consisting of sulfonated poly(ether ether ketone) and 5-amino-benzotriazole tethered polysulfone for DMFC. Journal of Membrane Science, 2010, 362, 289-297.	4.1	70
111	Structural determination of Torlon® 4000T polyamide–imide by NMR spectroscopy. Polymer, 2004, 45, 1111-1117.	1.8	69
112	Proton-conducting membranes from poly(ether sulfone)s grafted with sulfoalkylamine. Journal of Membrane Science, 2013, 427, 443-450.	4.1	69
113	Progress in Highâ€Performance Anion Exchange Membranes Based on the Design of Stable Cations for Alkaline Fuel Cells. Advanced Materials Technologies, 2021, 6, 2001220.	3.0	69
114	Using silica nanoparticles for modifying sulfonated poly(phthalazinone ether ketone) membrane for direct methanol fuel cell: A significant improvement on cell performance. Journal of Power Sources, 2006, 155, 111-117.	4.0	68
115	Azide-assisted self-crosslinking of highly ion conductive anion exchange membranes. Journal of Membrane Science, 2016, 509, 48-56.	4.1	68
116	Unobstructed Ultrathin Gas Transport Channels in Composite Membranes by Interfacial Selfâ€Assembly. Advanced Materials, 2020, 32, e1907701.	11.1	68
117	Chiral separation with molecularly imprinted polysulfone-aldehyde derivatized nanofiber membranesâ [†] . Journal of Membrane Science, 2012, 401-402, 89-96.	4.1	67
118	Naphthalene-based poly(arylene ether ketone) anion exchange membranes. Journal of Materials Chemistry A, 2013, 1, 6481.	5.2	67
119	Effect of methanol treatment on gas sorption and transport behavior of intrinsically microporous polyimide membranes incorporating Tröger׳s base. Journal of Membrane Science, 2015, 480, 104-114.	4.1	67
120	Copolymers of Intrinsic Microporosity Based on 2,2′,3,3′â€Tetrahydroxyâ€1,1′â€dinaphthyl. Macromolec Rapid Communications, 2009, 30, 584-588.	cular 2.0	66
121	Poly(phenylene oxide)s incorporating N-spirocyclic quaternary ammonium cation/cation strings for anion exchange membranes. Journal of Membrane Science, 2020, 595, 117507.	4.1	66
122	Spinel-based ceramic membranes coupling solid sludge recycling with oily wastewater treatment. Water Research, 2020, 169, 115180.	5. 3	66
123	Oriented proton-conductive nano-sponge-facilitated polymer electrolyte membranes. Energy and Environmental Science, 2020, 13, 297-309.	15.6	66
124	Flexible Superhydrophobic Metal-Based Carbon Nanotube Membrane for Electrochemically Enhanced Water Treatment. Environmental Science & Environmental S	4.6	65
125	A Highly Permeable Aligned Montmorillonite Mixedâ€Matrix Membrane for CO ₂ Separation. Angewandte Chemie - International Edition, 2016, 55, 9321-9325.	7.2	64
126	Self-crosslinked blend alkaline anion exchange membranes with bi-continuous phase separated morphology to enhance ion conductivity. Journal of Membrane Science, 2020, 597, 117769.	4.1	63

#	Article	IF	Citations
127	Chemical Modification of Polysulfones: A Facile Method of Preparing Azide Derivatives from Lithiated Polysulfone Intermediates. Macromolecules, 1995, 28, 294-301.	2.2	62
128	Toward alkaline-stable anion exchange membranes in fuel cells: cycloaliphatic quaternary ammonium-based anion conductors. Electrochemical Energy Reviews, 2022, 5, 348-400.	13.1	62
129	Fluorenyl-containing sulfonated poly(aryl ether ether ketone ketone)s (SPFEEKK) for fuel cell applications. Journal of Membrane Science, 2006, 280, 54-64.	4.1	61
130	Magnetic-field-oriented mixed-valence-stabilized ferrocenium anion-exchange membranes for fuel cells. Nature Energy, 2022, 7, 329-339.	19.8	60
131	Thermostable ultrafiltration and nanofiltration membranes from sulfonated poly(phthalazinone) Tj ETQq $1\ 1\ 0.784$	3]4 rgBT / 4.1	 Gyerlock
132	Multi-scale study on bifunctional Co/Fe–N–C cathode catalyst layers with high active site density for the oxygen reduction reaction. Applied Catalysis B: Environmental, 2021, 299, 120656.	10.8	58
133	Fluorinated Poly(aryl ether) Containing a 4-Bromophenyl Pendant Group and its Phosphonated Derivative. Macromolecular Rapid Communications, 2006, 27, 1411-1417.	2.0	57
134	Simulation of membrane-based CO2 capture in a coal-fired power plant. Journal of Membrane Science, 2013, 427, 451-459.	4.1	57
135	Mixed gas sorption in glassy polymeric membranes: II. CO2/CH4 mixtures in a polymer of intrinsic microporosity (PIM-1). Journal of Membrane Science, 2014, 459, 264-276.	4.1	56
136	Novel approaches to fabricate carbon molecular sieve membranes based on chemical modified and solvent treated polyimides. Microporous and Mesoporous Materials, 2004, 73, 151-160.	2.2	54
137	Measurements of PEM conductivity by impedance spectroscopy. Solid State Ionics, 2008, 179, 619-624.	1.3	53
138	Mixed matrix membranes for CO2 separations by incorporating microporous polymer framework fillers with amine-rich nanochannels. Journal of Membrane Science, 2021, 620, 118923.	4.1	53
139	Functionalized polysulfone membranes by heterogeneous lithiation. Journal of Applied Polymer Science, 1993, 48, 1597-1606.	1.3	52
140	Synthesis and characterization of sulfonated poly(phthalazinone ether sulfone ketone) for ultrafiltration and nanofiltration membranes. Journal of Applied Polymer Science, 2001, 79, 1685-1692.	1.3	52
141	Increases in the proton conductivity and selectivity of proton exchange membranes for direct methanol fuel cells by formation of nanocomposites having proton conducting channels. Journal of Power Sources, 2009, 194, 206-213.	4.0	52
142	Mixed gas sorption in glassy polymeric membranes. III. CO2/CH4 mixtures in a polymer of intrinsic microporosity (PIM-1): Effect of temperature. Journal of Membrane Science, 2017, 524, 746-757.	4.1	52
143	Enhanced thermo-oxidative stability of sulfophenylated poly(ether sulfone)s. Polymer, 2010, 51, 403-413.	1.8	51
144	Oil–Water–Oil Triphase Synthesis of Ionic Covalent Organic Framework Nanosheets. Angewandte Chemie - International Edition, 2021, 60, 27078-27085.	7.2	51

#	Article	IF	CITATIONS
145	Exploring Torlon/P84 co-polyamide-imide blended hollow fibers and their chemical cross-linking modifications for pervaporation dehydration of isopropanol. Separation and Purification Technology, 2008, 61, 404-413.	3.9	50
146	Durable Sulfonated Poly(benzothiazole- <i>co</i> -benzimidazole) Proton Exchange Membranes. Macromolecules, 2014, 47, 6355-6364.	2.2	49
147	Fabrication of mullite ceramic-supported carbon nanotube composite membranes with enhanced performance in direct separation of high-temperature emulsified oil droplets. Journal of Membrane Science, 2019, 582, 140-150.	4.1	48
148	Highly Conductive Anionâ€Exchange Membranes from Microporous Tröger's Base Polymers. Angewandte Chemie, 2016, 128, 11671-11674.	1.6	47
149	Biomimetic Nanocones that Enable High Ion Permselectivity. Angewandte Chemie - International Edition, 2019, 58, 12646-12654.	7.2	47
150	Ionomer migration within PEMFC catalyst layers induced by humidity changes. Electrochemistry Communications, 2019, 109, 106590.	2.3	46
151	Preparation and Characterization of Polysulfones Containing Both Hexafluoroisopropylidene and Trimethylsilyl Groups as Gas Separation Membrane Materialsâ€. Macromolecules, 2004, 37, 1403-1410.	2.2	45
152	A Novel Bisphenol Monomer with Grafting Capability and the Resulting Poly(arylene ether sulfone)sâ€. Macromolecules, 2006, 39, 6990-6996.	2.2	45
153	Molecularly Imprinted Nanofiber Membranes from Carboxylated Polysulfone by Electrospray Deposition. Macromolecular Rapid Communications, 2007, 28, 2100-2105.	2.0	45
154	Radiation-induced grafting of styrene onto ultra-high molecular weight polyethylene powder and subsequent film fabrication for application as polymer electrolyte membranes: I. Influence of grafting conditionsa~†. Journal of Membrane Science, 2008, 325, 964-972.	4.1	45
155	Highly fluorinated comb-shaped copolymer as proton exchange membranes (PEMs): Fuel cell performance. Journal of Power Sources, 2008, 182, 100-105.	4.0	45
156	Radiation-induced grafting of styrene onto ultra-high molecular weight polyethylene powder for polymer electrolyte fuel cell application. Journal of Membrane Science, 2009, 333, 59-67.	4.1	45
157	Mechanically robust microporous anion exchange membranes with efficient anion conduction for fuel cells. Chemical Engineering Journal, 2021, 418, 129311.	6.6	44
158	Functionalized Polysulfones: Methods for Chemical Modification and Membrane Applications. ACS Symposium Series, 1999, , 137-161.	0.5	43
159	Synergistic CO ₂ â€Sieving from Polymer with Intrinsic Microporosity Masking Nanoporous Singleâ€Layer Graphene. Advanced Functional Materials, 2020, 30, 2003979.	7.8	43
160	Copoly(arylene ether nitrile)s—High-Performance Polymer Electrolytes for Direct Methanol Fuel Cells. Journal of the Electrochemical Society, 2008, 155, B21.	1.3	42
161	Enhancement in the Gas Permeabilities of Novel Polysulfones with Pendant 4-Trimethylsilyl-α-hydroxylbenzyl Substituentsâ€. Macromolecules, 2003, 36, 6807-6816.	2.2	40
162	Chiral separation membranes from modified polysulfone having myrtenal-derived terpenoid side groups. European Polymer Journal, 2006, 42, 2532-2539.	2.6	40

#	Article	IF	CITATIONS
163	A solution-processable and ultra-permeable conjugated microporous thermoset for selective hydrogen separation. Nature Communications, 2020, 11, 1633.	5.8	40
164	Polysulfone membranes. V. Poly(phenyl sulfone) (Radel R)–poly(vinyl pyrrolidone) membranes. Journal of Applied Polymer Science, 1994, 54, 783-792.	1.3	39
165	Evaluation of the recognition ability of molecularly imprinted materials by surface plasmon resonance (SPR) spectroscopy. Analytica Chimica Acta, 2003, 489, 191-198.	2.6	39
166	Vapor permeation of aqueous 2-propanol solutions through gelatin/Torlon® poly(amide imide) blended membranes. Journal of Membrane Science, 2004, 243, 89-95.	4.1	39
167	High performance direct methanol fuel cells based on acid–base blend membranes containing benzotriazole. Electrochemistry Communications, 2010, 12, 607-610.	2.3	39
168	Sulfonated naphthalenic polyimides containing ether and ketone linkages as polymer electrolyte membranes. Journal of Membrane Science, 2011, 366, 73-81.	4.1	39
169	Durability enhancement of proton exchange membrane fuel cells by ferrocyanide or ferricyanide additives. Journal of Membrane Science, 2021, 629, 119282.	4.1	39
170	Proton exchange membranes based on sulfonated poly(phthalazinone ether ketone)s/aminated polymer blends. Solid State Ionics, 2005, 176, 409-415.	1.3	38
171	Morphology of Comb-Shaped Proton Exchange Membrane Copolymers Based on a Neutron Scattering Study. Macromolecules, 2008, 41, 6176-6182.	2.2	37
172	Sorption of CO2/CH4 mixtures in TZ-PIM, PIM-1 and PTMSP: Experimental data and NELF-model analysis of competitive sorption and selectivity in mixed gases. Journal of Membrane Science, 2019, 585, 136-149.	4.1	37
173	Correlation between Structure and Gas Transport Properties of Silyl-Modified Polysulfones and Poly(phenyl sulfone)s. Macromolecules, 2001, 34, 2908-2913.	2.2	36
174	Proton exchange membranes derived from sulfonated polybenzothiazoles containing naphthalene units. Journal of Membrane Science, 2017, 542, 159-167.	4.1	36
175	Homopolymer-like sulfonated phenyl- and diphenyl-poly(arylene ether ketone)s for fuel cell applications. Journal of Power Sources, 2008, 185, 899-903.	4.0	35
176	A capillary water retention effect to improve medium-temperature fuel cell performance. Electrochemistry Communications, 2013, 31, 120-124.	2.3	34
177	Structural influence of hydrophobic diamine in sulfonated poly(sulfide sulfone imide) copolymers on medium temperature PEM fuel cell. Polymer, 2014, 55, 1317-1326.	1.8	34
178	Hierarchically Porous Coâ^'Nâ^'C Cathode Catalyst Layers for Anion Exchange Membrane Fuel Cells. ChemSusChem, 2019, 12, 4165-4169.	3.6	34
179	Polysulfone membranes. IV. Performance evaluation of Radel A/PVP membranes. Journal of Membrane Science, 1993, 78, 123-134.	4.1	33
180	Sulfonated poly(phthalazinone ether ketone) for proton exchange membranes in direct methanol fuel cells. Journal of Membrane Science, 2005, 265, 108-114.	4.1	33

#	Article	IF	Citations
181	Radiation-grafted membranes based on polyethylene for direct methanol fuel cells. Journal of Power Sources, 2010, 195, 21-29.	4.0	32
182	A Highly Permeable Aligned Montmorillonite Mixedâ€Matrix Membrane for CO 2 Separation. Angewandte Chemie, 2016, 128, 9467-9471.	1.6	32
183	Ultrapermeable membranes. Nature Materials, 2017, 16, 880-881.	13.3	32
184	Proton-Conducting Poly- \hat{l}^3 -glutamic Acid Nanofiber Embedded Sulfonated Poly(ether sulfone) for Proton Exchange Membranes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 21865-21873.	4.0	32
185	Highly lithium-ion conductive battery separators from thermally rearranged polybenzoxazole. Chemical Communications, 2015, 51, 2068-2071.	2.2	31
186	Gas Transport in a Polymer of Intrinsic Microporosity (PIM-1) Substituted with Pseudo-Ionic Liquid Tetrazole-Type Structures. Macromolecules, 2020, 53, 8951-8959.	2.2	31
187	Design of Pt-C/Fe-N-S-C cathode dual catalyst layers for proton exchange membrane fuel cells under low humidity. Electrochimica Acta, 2019, 296, 450-457.	2.6	30
188	Sulfonated poly(aryl ether ether ketone ketone)s containing fluorinated moieties as proton exchange membrane materials. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2299-2310.	2.4	29
189	A comparative structure–property study of methylphenylated and fluoromethylphenylated poly(aryl) Tj ETQq1	1 0.7843 1.8	14 rgBT /Ove
190	Mixed-Matrix Membranes with Covalent Triazine Framework Fillers in Polymers of Intrinsic Microporosity for CO ₂ Separations. Industrial & Engineering Chemistry Research, 2020, 59, 5296-5306.	1.8	28
191	Modified polysulphone membranes: 1. Pervaporation of water/alcohol mixtures through modified polysulphone membranes having methyl ester moiety. Polymer, 1992, 33, 4805-4813.	1.8	27
192	Soluble sulfonated polybenzothiazoles containing naphthalene for use as proton exchange membranes. Journal of Membrane Science, 2015, 490, 346-353.	4.1	27
193	Electrospun nanofiber membranes from polysulfones with chiral selector aimed for optical resolution. European Polymer Journal, 2012, 48, 1717-1725.	2.6	26
194	Anisotropic radio-chemically pore-filled anion exchange membranes for solid alkaline fuel cell (SAFC). Journal of Membrane Science, 2015, 495, 206-215.	4.1	26
195	Fuel cell performance of pendent methylphenyl sulfonated poly(ether ether ketone ketone)s. Journal of Power Sources, 2017, 368, 30-37.	4.0	26
196	Anion exchange membranes with eight flexible side-chain cations for improved conductivity and alkaline stability. Science China Materials, 2020, 63, 2539-2550.	3.5	26
197	Mass Transfer in a Co/N/C Catalyst Layer for the Anion Exchange Membrane Fuel Cell. ACS Applied Materials & Samp; Interfaces, 2020, 12, 32842-32850.	4.0	26
198	Weakly pressure-dependent molecular sieving of propylene/propane mixtures through mixed matrix membrane with ZIF-8 direct-through channels. Journal of Membrane Science, 2022, 648, 120366.	4.1	26

#	Article	IF	CITATIONS
199	Modified polysulfones 5: synthesis and characterization of tetramethyl polysulfones containing trimethylsilyl groups and their gas transport properties. Polymer, 2002, 43, 5369-5378.	1.8	25
200	Blend Membranes Based on Sulfonated Poly(ether ether ketone) and Polysulfone Bearing Benzimidazole Side Groups for DMFCs. Electrochemical and Solid-State Letters, 2007, 10, B70.	2.2	25
201	Surface orientation of hydrophilic groups in sulfonated poly(ether ether ketone) membranes. Journal of Colloid and Interface Science, 2013, 409, 193-203.	5.0	25
202	Ionomer dispersion solvent influence on the microstructure of Co–N–C catalyst layers for anion exchange membrane fuel cell. Journal of Power Sources, 2021, 484, 229259.	4.0	25
203	Molecularly imprinted films derived from Torlon® polyamide–imide. Journal of Molecular Structure, 2005, 739, 41-46.	1.8	24
204	Comparative effect of phthalazinone units in sulfonated poly(arylene ether ether ketone ketone) copolymers as proton exchange membrane materials. Journal of Polymer Science Part A, 2008, 46, 989-1002.	2.5	24
205	Fabrication of Fluorescent Holographic Micropatterns Based on Azobenzene-Containing Hostâ^'Guest Complexes. Langmuir, 2009, 25, 10444-10446.	1.6	24
206	Novel PA-doped polybenzimidazole membranes with high doping level, high proton conductivity and high stability for HT-PEMFCs. RSC Advances, 2015, 5, 53870-53873.	1.7	24
207	Recognition and Selective Transport of Nucleic Acid Components through Molecularly Imprinted Polymeric Membranes. Macromolecular Materials and Engineering, 2001, 286, 52-59.	1.7	23
208	Effect of Hexafluoro-2-propanol Substituents in Polymers on Gas Permeability and Fractional Free Volumeâ€. Macromolecules, 2005, 38, 9670-9678.	2.2	23
209	Phase separation in carboxylated polysulfone/solvent/water systems. Journal of Applied Polymer Science, 1991, 42, 3215-3221.	1.3	22
210	Modified polysulfone membranes. III. Pervaporation separation of benzene-cyclohexane mixtures through carboxylated polysulfone membranes*. Journal of Applied Polymer Science, 1999, 74, 407-412.	1.3	22
211	Preparation and DMFC performance of a sulfophenylated poly(arylene ether ketone) polymer electrolyte membrane. Electrochimica Acta, 2010, 55, 3817-3823.	2.6	22
212	Influence of silica content in crosslinked PVA/PSSA_MA/Silica hybrid membrane for direct methanol fuel cell (DMFC). Macromolecular Research, 2007, 15, 412-417.	1.0	20
213	Blend Membranes Consisting of Sulfonated Poly(ether ether ketone) and Polysulfone Bearing 4-Nitrobenzimidazole for Direct Methanol Fuel Cells. Journal of the Electrochemical Society, 2009, 156, B258.	1.3	20
214	Poly(arylene ether) electrolyte membranes bearing aliphatic-chain-linked sulfophenyl pendant groups. Journal of Membrane Science, 2013, 428, 629-638.	4.1	20
215	Biomimetic Nanocones that Enable High Ion Permselectivity. Angewandte Chemie, 2019, 131, 12776-12784.	1.6	20
216	Confined facilitated transport within covalent organic frameworks for propylene/propane membrane separation. Chemical Engineering Journal, 2022, 439, 135657.	6.6	20

#	Article	IF	Citations
217	A paradigm shift for a new class of proton exchange membranes with ferrocyanide proton-conducting groups providing enhanced oxidative stability. Journal of Membrane Science, 2020, 616, 118536.	4.1	19
218	Modified polysulfones. IV. Synthesis and characterization of polymers with silicon substituents for a comparative study of gas-transport properties. Journal of Polymer Science Part A, 2001, 39, 2103-2124.	2.5	18
219	Modified polysulfones. III. Synthesis and characterization of polysulfone aldehydes for reactive membrane materials. Journal of Polymer Science Part A, 2001, 39, 675-682.	2.5	18
220	Gas transport and dynamic mechanical behavior in modified polysulfones with trimethylsilyl groups: effect of degree of substitution. Journal of Membrane Science, 2003, 223, 1-10.	4.1	18
221	Vapor Permeation and Pervaporation of Aqueous 2â€Propanol Solutions through the Torlon ® Poly(amide imide) Membrane. Separation Science and Technology, 2005, 40, 2697-2707.	1.3	18
222	Blend Membranes Consisting of Sulfonated Poly(ether ether ketone) and 1H-Perimidine Tethered Polysulfone for Direct Methanol Fuel Cells. Electrochemical and Solid-State Letters, 2009, 12, B180.	2.2	18
223	Tuning surface hydrophilicity/hydrophobicity of hydrocarbon proton exchange membranes (PEMs). Journal of Colloid and Interface Science, 2016, 466, 168-177.	5.0	18
224	Solvent-processable 0D covalent organic framework quantum dot engineered composite membranes for biogas upgrading. Journal of Membrane Science, 2021, 640, 119803.	4.1	17
225	SPAEK-based binary blends and ternary composites as proton exchange membranes for DMFCs. Journal of Membrane Science, 2012, 415-416, 520-526.	4.1	16
226	Use of non-selective, high-molecular-weight poly(ethylene oxide) membrane for CO2 separation by incorporation of comb copolymer. Journal of Membrane Science, 2020, 605, 118092.	4.1	16
227	Variations in the pore size of charged and noncharged hydrophilic polysulfone membranes. Industrial & Lamp; Engineering Chemistry Research, 1992, 31, 834-838.	1.8	15
228	Restricted chain rotation in polymers containing pendant groups: structural characterization of hydroxyl-functionalized polysulfones. Macromolecules, 1992, 25, 5181-5185.	2.2	15
229	Hydrogen crossover through microporous anion exchange membranes for fuel cells. Journal of Power Sources, 2022, 527, 231143.	4.0	15
230	Modified polysulfones. VI. Preparation of polymer membrane materials containing benzimine and benzylamine groups as precursors for molecularly imprinted sensor devices. Journal of Polymer Science Part A, 2003, 41, 1316-1329.	2.5	14
231	Syntheses of polysulfones containing chelating reagents and their application to the preconcentration of trace metals. Reactive and Functional Polymers, 1996, 31, 207-218.	2.0	13
232	Surface plasmon resonance studies on molecularly imprinted films. Journal of Applied Polymer Science, 2008, 110, 2826-2832.	1.3	13
233	Graphene Oxide Membranes with Heterogeneous Nanodomains for Efficient CO ₂ Separations. Angewandte Chemie, 2017, 129, 14434-14439.	1.6	13
234	Optical Resolution Membranes from Polysulfones Bearing Alanine Derivatives as Chiral Selectors. Macromolecular Materials and Engineering, 2011, 296, 562-567.	1.7	12

#	Article	IF	CITATIONS
235	Modified Polysulfone Membranes II. Pervaporation of Aqueous Ethanol Solution through Modified Polysulfone Membranes Bearing Various Hydroxyl Groups. Polymer Journal, 1992, 24, 1049-1055.	1.3	11
236	Clustering in carboxylated polysulfone ionomers: A characterization by dynamic mechanical and small-angle X-ray scattering methods. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 3226-3232.	2.4	11
237	Blend Membranes Based on Acid-Base Interactions for Operation at High Methanol Concentrations. Journal of the Electrochemical Society, 2009, 156, B46.	1.3	11
238	Molecular Design Aspect of Sulfonated Polymers for Direct Methanol Fuel Cells. ECS Transactions, 2010, 33, 711-717.	0.3	11
239	Novel iodo-containing poly(arylene ether ketone)s as intermediates for grafting perfluoroalkyl sulfonic acid groups. Reactive and Functional Polymers, 2017, 111, 7-13.	2.0	11
240	Synthesis and characterization of soluble copoly(ether ketone)s containing double bonds. Journal of Polymer Science Part A, 2002, 40, 3449-3454.	2.5	10
241	Gas transport in modified polysulfones with trimethylsilyl groups: effect of substitution site. Journal of Membrane Science, 2003, 212, 147-155.	4.1	10
242	3D-quantification of biomolecular covers using surface plasmon-polariton resonance experiment. Sensors and Actuators B: Chemical, 2008, 134, 66-71.	4.0	10
243	Interpretation of direct methanol fuel cell electrolyte properties using non-traditional length-scale parameters. Journal of Membrane Science, 2011, 374, 49-58.	4.1	9
244	Highly Cationized and Porous Hyper-cross-linked Polymer Nanospheres for Composite Anion Exchange Membranes. ACS Applied Polymer Materials, 2021, 3, 5612-5621.	2.0	9
245	Cost-effective Prussian blue analogue composite proton exchange membranes for low humidity fuel cell operation. Journal of Power Sources, 2022, 537, 231542.	4.0	9
246	Molecular Motions of Adsorbed CO ₂ on a Tetrazole-Functionalized PIM Polymer Studied with ¹³ C NMR. Journal of Physical Chemistry C, 2013, 117, 22995-22999.	1.5	8
247	Carbon fiber paper supported nano-Pt electrode with high electrocatalytic activity for concentrated nitric acid reduction. Journal of Electroanalytical Chemistry, 2017, 794, 43-48.	1.9	8
248	CO2 Adsorption on PIMs Studied with 13C NMR Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 4403-4408.	1.5	8
249	Surface-modified polysulfone membranes: Aqueous phase oxidation via persulfate radical. Journal of Applied Polymer Science, 2006, 101, 1723-1730.	1.3	7
250	Polymers in Membrane Electrode Assemblies. , 2012, , 691-720.		7
251	Self-adjusting anode catalyst layer for smart water management in anion exchange membrane fuel cells. Cell Reports Physical Science, 2021, 2, 100377.	2.8	7
252	Oil–Water–Oil Triphase Synthesis of Ionic Covalent Organic Framework Nanosheets. Angewandte Chemie, 2021, 133, 27284-27291.	1.6	7

#	Article	IF	CITATIONS
253	Modified Polysulfone Membranes. IV. Gas Separation with Aminated Polysulfone Membranes Journal of Fiber Science and Technology, 2000, 56, 272-281.	0.0	6
254	Surface Plasmon Resonance Biomolecular Recognition Nanosystem: Influence of the Interfacial Electrical Potential. Journal of Nanoscience and Nanotechnology, 2014, 14, 6559-6564.	0.9	6
255	Sorption of Water/Methanol on Teflon and Hydrocarbon Proton Exchange Membranes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12541-12551.	4.0	6
256	Chiral Separation of Racemic Amino Acids through Membranes derived from Modified Polysulfone Having Perillaldehyde Moiety as a Side Group. Membrane, 2005, 30, 219-225.	0.0	5
257	Reinforced Films Based on Cross-Linked Water-Soluble Sulfonated Carbon Nanotubes with Sulfonated Polystyrene. Journal of Nanoscience and Nanotechnology, 2009, 9, 5150-5156.	0.9	5
258	Self-supported membranes fabricated by a polymerâ€'hydrogen bonded network with a rigidified MOF framework. Journal of Membrane Science, 2022, 650, 120427.	4.1	5
259	Proton Conductivity of Aromatic Polymers. , 2012, , 331-369.		4
260	Selective Recognition and Permeation of Bisphenol A with Molecularly Imprinted Polyamide Membranes Membrane, 2001, 26, 185-188.	0.0	3
261	Towards High Conductivity in Anionâ€Exchange Membranes for Alkaline Fuel Cells. ChemSusChem, 2013, 6, 1290-1290.	3.6	3
262	Gas Transport Properties of Tetramethyl Polysulfones Containing Trimethylsilyl Group Side Substituents. ACS Symposium Series, 2004, , 154-166.	0.5	2
263	Isobaric vapor–liquid equilibria of the binary system maleic anhydride and dimethyl phthalate at 2.67, 5.33 and 8.00kPa. Fluid Phase Equilibria, 2006, 247, 54-58.	1.4	2
264	Sulphonated Biphenylated Poly(aryl ether ketone)s for Fuel Cell Applications. Fuel Cells, 2010, 10, 45-53.	1.5	2
265	Development of Sulfonated Poly(ether-ether ketone)s for PEMFC and DMFC., 2008, , 1-36.		1
266	Membrane Electrode Assemblies Based on Hydrocarbon Electrolytes with Nitrile Groups for Direct Methanol Fuel Cells. ECS Transactions, 2013, 50, 2139-2149.	0.3	1
267	Micro-Raman Spectra for Lipids C-H in Colorectal Tissue. Zhongguo Jiguang/Chinese Journal of Lasers, 2010, 37, 605-608.	0.2	1
268	[P1.037] Sorption of CO2/CH4 Mixtures in PIM-1 and PTMSP Membranes: Experimental Data at 35°C and Modeling. Procedia Engineering, 2012, 44, 758-759.	1.2	0