
Henning Matthiesen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8434901/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influences of summer warming and nutrient availability on Salix glauca L. growth in Greenland along an ice to sea gradient. Scientific Reports, 2022, 12, 3077.	3.3	4
2	Bone degradation at five Arctic archaeological sites: Quantifying the importance of burial environment and bone characteristics. Journal of Archaeological Science, 2021, 125, 105296.	2.4	10
3	Bone biodeterioration—The effect of marine and terrestrial depositional environments on early diagenesis and bone bacterial community. PLoS ONE, 2020, 15, e0240512.	2.5	22
4	The Impact of Vegetation on Archaeological Sites in the Low Arctic in Light of Climate Change. Arctic, 2020, 73, 141-152.	0.4	7
5	Predicting the loss of organic archaeological deposits at a regional scale in Greenland. Scientific Reports, 2019, 9, 9097.	3.3	17
6	Footprints from the past: The influence of past human activities on vegetation and soil across five archaeological sites in Greenland. Science of the Total Environment, 2019, 654, 895-905.	8.0	35
7	A Ticking Clock? Preservation and Management of Greenland's Archaeological Heritage in the Twenty-First Century. Conservation and Management of Archaeological Sites, 2018, 20, 175-198.	0.5	13
8	Oxygen concentration and mobility in conserved archaeological wood. Studies in Conservation, 2017, 62, 494-497.	1.1	1
9	The Impact of Climate Change on an Archaeological Site in the Arctic. Archaeometry, 2017, 59, 1175-1189.	1.3	28
10	The importance of cellulose content and wood density for attack of waterlogged archaeological wood by the shipworm, Teredo navalis. Journal of Cultural Heritage, 2017, 28, 75-81.	3.3	7
11	Climate change and the preservation of archaeological sites in Greenland. , 2017, , 90-99.		5
12	Monitoring and Mitigation Works in Unsaturated Archaeological Deposits. Conservation and Management of Archaeological Sites, 2016, 18, 86-98.	0.5	4
13	Making Better Use of Monitoring Data. Conservation and Management of Archaeological Sites, 2016, 18, 116-125.	0.5	3
14	<i>In situ</i> Preservation Solutions for Deposited Iron Age Human Bones in Alken Enge, Denmark. Conservation and Management of Archaeological Sites, 2016, 18, 126-138.	0.5	10
15	Climate change and the loss of organic archaeological deposits in the Arctic. Scientific Reports, 2016, 6, 28690.	3.3	20
16	Impact of Roots and Rhizomes on Wetland Archaeology: A Review. Conservation and Management of Archaeological Sites, 2015, 17, 370-391.	0.5	14
17	<i>In situ</i> Measurements of Oxygen Dynamics in Unsaturated Archaeological Deposits. Archaeometry, 2015, 57, 1078-1094.	1.3	11
18	Detecting and quantifying ongoing decay of organic archaeological remains: A discussion of different approaches. Quaternary International, 2015, 368, 43-50.	1.5	10

Henning Matthiesen

#	Article	IF	CITATIONS
19	Permafrost thawing in organic Arctic soils accelerated by ground heat production. Nature Climate Change, 2015, 5, 574-578.	18.8	42
20	The Influence of Soil Moisture, Temperature and Oxygen on the Oxic Decay of Organic Archaeological Deposits. Archaeometry, 2015, 57, 362-377.	1.3	19
21	Degradation of Archaeological Wood Under Freezing and Thawing Conditions—Effects of Permafrost and Climate Change. Archaeometry, 2014, 56, 479-495.	1.3	33
22	Oxygen consumption by conserved archaeological wood. Analytical and Bioanalytical Chemistry, 2013, 405, 6373-6377.	3.7	7
23	Nydam Mose: <i>In Situ</i> Preservation at Work. Conservation and Management of Archaeological Sites, 2012, 14, 479-486.	0.5	12
24	The Future Preservation of a Permanently Frozen Kitchen Midden in Western Greenland. Conservation and Management of Archaeological Sites, 2012, 14, 159-168.	0.5	9
25	Quantification and Visualization of <i>In Situ</i> Degradation at the World Heritage Site Bryggen in Bergen, Norway. Conservation and Management of Archaeological Sites, 2012, 14, 215-227.	0.5	11
26	The 4th International Conference on Preserving Archaeological Remains <i>In Situ</i> (PARIS4): 23–26 May 2011, the National Museum of Denmark, Copenhagen. Conservation and Management of Archaeological Sites, 2012, 14, 1-6.	0.5	11
27	Paleo-Eskimo kitchen midden preservation in permafrost under future climate conditions at Qajaa, West Greenland. Journal of Archaeological Science, 2011, 38, 1331-1339.	2.4	22
28	Microbiologically influenced corrosion of archaeological artefacts: characterisation of iron(II) sulfides by Raman spectroscopy. Journal of Raman Spectroscopy, 2010, 41, 1425-1433.	2.5	78
29	Detailed chemical analyses of groundwater as a tool for monitoring urban archaeological deposits: results from Bryggen in Bergen. Journal of Archaeological Science, 2008, 35, 1378-1388.	2.4	24
30	The Use and Deployment of Modern Wood Samples as a Proxy Indicator for Biogeochemical Processes on Archaeological Sites Preserved <i>in situ</i> in a Variety of Environments of Differing Saturation Level. Conservation and Management of Archaeological Sites, 2008, 10, 204-222.	0.5	11
31	The Correlation between Bulk Density and Shock Resistance of Waterlogged Archaeological Wood using the Pilodyn. Studies in Conservation, 2007, 52, 289-298.	1.1	10
32	A Novel Method to Determine Oxidation Rates of Heritage Materials in Vitro and in Situ. Studies in Conservation, 2007, 52, 271-280.	1.1	28
33	Environmental Monitoring at Nydam, a Waterlogged Site with Weapon Sacrifices from the Danish Iron Age. I: A Comparison of Methods Used and Results from Undisturbed Conditions. Journal of Wetland Archaeology, 2004, 4, 55-74.	1.2	30
34	In situ measurement of soil pH. Journal of Archaeological Science, 2004, 31, 1373-1381.	2.4	35
35	The use of radiography and GIS to assess the deterioration of archaeological iron objects from a water logged environment. Journal of Archaeological Science, 2004, 31, 1451-1461.	2.4	19