Cheng Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8434806/publications.pdf

Version: 2024-02-01

81839 76872 5,749 94 39 74 citations g-index h-index papers 97 97 97 8113 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	NiMoFe nanoparticles@MoO ₂ nano-pillar arrays as bifunctional electrodes for ultra-low-voltage overall water splitting. Journal of Materials Chemistry A, 2022, 10, 3760-3770.	5. 2	22
2	Direct solar to hydrogen conversion enabled by silicon photocathodes with carrier selective passivated contacts. Sustainable Energy and Fuels, 2022, 6, 349-360.	2.5	3
3	A Versatile Cation Additive Enabled Highly Reversible Zinc Metal Anode. Advanced Energy Materials, 2022, 12, .	10.2	95
4	A method for quantitatively separating the piezoelectric component from the as-received "Piezoelectric―signal. Nature Communications, 2022, 13, 1391.	5.8	68
5	Structural Insights into the Lithium Ion Storage Behaviors of Niobium Tungsten Double Oxides. Chemistry of Materials, 2022, 34, 388-398.	3.2	21
6	A Wadsley–Roth crystallographic shear phase SrNb ₆ O ₁₆ anode for fast Li-ion storage. Chemical Communications, 2022, 58, 8626-8629.	2.2	1
7	Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy and Environmental Science, 2021, 14, 3492-3501.	15.6	152
8	Laminar Metal Foam: A Soft and Highly Thermally Conductive Thermal Interface Material with a Reliable Joint for Semiconductor Packaging. ACS Applied Materials & Samp; Interfaces, 2021, 13, 15791-15801.	4.0	7
9	Battery-on-Separator: A platform technology for arbitrary-shaped lithium ion batteries for high energy density storage. Journal of Power Sources, 2021, 490, 229527.	4.0	6
10	Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode under Multiphysical Fields. Chemical Reviews, 2021, 121, 5986-6056.	23.0	165
11	Exploration of the form factors of turbulence kinetic energy transfer for shear exfoliation of graphene. Nanotechnology, 2021, 32, 265601.	1.3	1
12	Design Principle, Optimization Strategies, and Future Perspectives of Anode-Free Configurations for High-Energy Rechargeable Metal Batteries. Electrochemical Energy Reviews, 2021, 4, 601-631.	13.1	69
13	Cations Coordinationâ€Regulated Reversibility Enhancement for Aqueous Znâ€lon Battery. Advanced Functional Materials, 2021, 31, 2105736.	7.8	59
14	Proton selective adsorption on $Pt\hat{a}\in \text{``Ni'}$ nano-thorn array electrodes for superior hydrogen evolution activity. Energy and Environmental Science, 2021, 14, 1594-1601.	15.6	71
15	Tipâ€Enhanced Electric Field: A New Mechanism Promoting Mass Transfer in Oxygen Evolution Reactions. Advanced Materials, 2021, 33, e2007377.	11.1	179
16	A conductive-dielectric gradient framework for stable lithium metal anode. Energy Storage Materials, 2020, 24, 700-706.	9.5	88
17	Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy and Environmental Science, 2020, 13, 86-95.	15.6	698
18	Interfacial electrochemical investigation of 3D space-confined MnFe2O4 for high-performance ionic liquid-based supercapacitors. Electrochimica Acta, 2020, 331, 135386.	2.6	22

#	Article	IF	Citations
19	3D interpenetrating assembly of partially oxidized MXene confined Mn–Fe bimetallic oxide for superior energy storage in ionic liquid. Electrochimica Acta, 2020, 334, 135546.	2.6	76
20	Nickel Metallized Nanofibers Based MnO2//PPy as Electrodes for All-in-One Ultrathin Flexible Asymmetric Supercapacitors. , 2020, , .		0
21	MnO ₂ @Nickel Nanocone Arrays with High Areal Capacitance for Flexible Zincion Supercapacitor., 2020,,.		1
22	Hierarchical Metallized Polyimide Fiber for Flexible Supercapacitors with Ultra-High Capacity. , 2020, , .		0
23	Laser-Induced Nitrogen-doped Graphene for High-Performance Flexible Supercapacitors. , 2020, , .		1
24	Interface metallization enabled an ultra-stable Fe ₂ O ₃ hierarchical anode for pseudocapacitors. RSC Advances, 2020, 10, 8636-8644.	1.7	4
25	An asymmetric supercapacitor based on a NiO/Co3O4@NiCo cathode and an activated carbon anode. New Carbon Materials, 2020, 35, 112-120.	2.9	18
26	A Novel Approach to Fabricate Membrane Electrode Assembly by Directly Coating the Nafion Ionomer on Catalyst Layers for Proton-Exchange Membrane Fuel Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 9803-9812.	3.2	37
27	Toward real-time monitoring of lithium metal growth and dendrite formation surveillance for safe lithium metal batteries. Journal of Materials Chemistry A, 2020, 8, 7090-7099.	5 . 2	11
28	A Periodic "Selfâ€Correction―Scheme for Synchronizing Lithium Plating/Stripping at Ultrahigh Cycling Capacity. Advanced Functional Materials, 2020, 30, 1910532.	7.8	39
29	Pseudocapacitive quantum dots confined in sacrificial g-C3N4 derived carbon nanosheets for high performance ionic liquid-based supercapacitors. Materials Letters, 2020, 266, 127498.	1.3	7
30	Ultrahighâ€Workingâ€Frequency Embedded Supercapacitors with 1T Phase MoSe ₂ Nanosheets for Systemâ€inâ€Package Application. Advanced Functional Materials, 2019, 29, 1807116.	7.8	47
31	NiMo Solid Solution Nanowire Array Electrodes for Highly Efficient Hydrogen Evolution Reaction. Advanced Functional Materials, 2019, 29, 1903747.	7.8	108
32	Boosting ion dynamics through superwettable leaf-like film based on porous g-C3N4 nanosheets for ionogel supercapacitors. NPG Asia Materials, $2019,11,$.	3.8	40
33	Catalysis: NiMo Solid Solution Nanowire Array Electrodes for Highly Efficient Hydrogen Evolution Reaction (Adv. Funct. Mater. 44/2019). Advanced Functional Materials, 2019, 29, 1970308.	7.8	0
34	High-performance coaxial wire-shaped supercapacitors using ionogel electrolyte toward sustainable energy system. Journal of Materials Research, 2019, 34, 3030-3039.	1.2	68
35	Bioinspired pomegranate-like microflowers confining core-shell binary Ni _x S _y nanobeads for efficient supercapacitors exhibiting a durable lifespan exceeding 100 000 cycles. Journal of Materials Chemistry A, 2019, 7, 3432-3442.	5 . 2	19
36	High-throughput extracellular pH monitoring and antibiotics screening by polymeric fluorescent sensor with LCST property. Methods, 2019, 168, 51-61.	1.9	4

#	Article	IF	CITATIONS
37	Embeddable Supercapacitors: Ultrahighâ€Workingâ€Frequency Embedded Supercapacitors with 1T Phase MoSe ₂ Nanosheets for Systemâ€inâ€Package Application (Adv. Funct. Mater. 9/2019). Advanced Functional Materials, 2019, 29, 1970058.	7.8	10
38	Holey nickel nanotube reticular network scaffold for high-performance flexible rechargeable Zn/MnO2 batteries. Chemical Engineering Journal, 2019, 370, 330-336.	6.6	56
39	Monolithic Integration of Allâ€inâ€One Supercapacitor for 3D Electronics. Advanced Energy Materials, 2019, 9, 1900037.	10.2	51
40	MnO2@Nickel Nanocone Arrays Coated Paper Electrode for Flexible Supercapacitors., 2019,,.		0
41	Nickel-Cobalt Sulfide Nonwoven Cloth with UltraHigh Areal Capacitance for Flexible Supercapacitors. , 2019, , .		0
42	Scalable Metalized Polyacrylonitrile Fiber as the Current Collector for High-Performance Flexible Supercapacitors on Flexible Circuits. , 2019, , .		0
43	Inhibition of bromate formation by reduced graphene oxide supported cerium dioxide during ozonation of bromide-containing water. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	3.3	11
44	Hierarchical supercapacitor electrodes based on metallized glass fiber for ultrahigh areal capacitance. Energy Storage Materials, 2019, 20, 315-323.	9.5	18
45	Ni@Li2O co-axial nanowire based reticular anode: Tuning electric field distribution for homogeneous lithium deposition. Energy Storage Materials, 2019, 18, 155-164.	9.5	59
46	A robust hierarchical microcapsule for efficient supercapacitors exhibiting an ultrahigh current density of 300 A g ^{â°'1} . Journal of Materials Chemistry A, 2018, 6, 5724-5732.	5.2	15
47	Laser processed micro-supercapacitors based on carbon nanotubes/manganese dioxide nanosheets composite with excellent electrochemical performance and aesthetic property. Chinese Chemical Letters, 2018, 29, 592-595.	4.8	7
48	Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries. Nature Communications, 2018, 9, 464.	5.8	250
49	High performance, environmentally benign and integratable Zn//MnO ₂ microbatteries. Journal of Materials Chemistry A, 2018, 6, 3933-3940.	5.2	53
50	Fabrication and Engineering of Nanostructured Supercapacitor Electrodes Using Electromagnetic Fieldâ∈Based Techniques. Advanced Materials Technologies, 2018, 3, 1700168.	3.0	12
51	Magnetic-field-induced rapid synthesis of defect-enriched Ni-Co nanowire membrane as highly efficient hydrogen evolution electrocatalyst. Nano Energy, 2018, 51, 349-357.	8.2	72
52	Hierarchical nickel nanowire@NiCo ₂ S ₄ nanowhisker composite arrays with a test-tube-brush-like structure for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 15284-15293.	5.2	77
53	Lavender-like cobalt hydroxide nanoflakes deposited on nickel nanowire arrays for high-performance supercapacitors. RSC Advances, 2018, 8, 17263-17271.	1.7	10
54	A hierarchical nickel–carbon structure templated by metal–organic frameworks for efficient overall water splitting. Energy and Environmental Science, 2018, 11, 2363-2371.	15.6	240

#	Article	IF	CITATIONS
55	A reduced graphene oxide/mixed-valence manganese oxide composite electrode for tailorable and surface mountable supercapacitors with high capacitance and super-long life. Energy and Environmental Science, 2017, 10, 941-949.	15.6	253
56	Integrated Sustainable Wind Power Harvesting and Ultrahigh Energy Density Wireâ€6haped Supercapacitors Based on Vertically Oriented Nanosheetâ€Arrayâ€Coated Carbon Fibers. Advanced Sustainable Systems, 2017, 1, 1700044.	2.7	11
57	A macrophage-activating, injectable hydrogel to sequester endogenous growth factors for in situ angiogenesis. Biomaterials, 2017, 134, 128-142.	5.7	72
58	All-printed paper based surface mountable supercapacitors. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24, 676-681.	1.8	9
59	Low-Temperature Fusible Silver Micro/Nanodendrites-Based Electrically Conductive Composites for Next-Generation Printed Fuse-Links. ACS Nano, 2017, 11, 7710-7718.	7.3	13
60	All-printed paper based supercapacitors. , 2017, , .		0
61	Scalable synthesis of mono-dispersed nickel nanoparticles and their application as thermal conductive fillers. , $2017, \ldots$		0
62	An Ultralong, Highly Oriented Nickelâ€Nanowireâ€Array Electrode Scaffold for Highâ€Performance Compressible Pseudocapacitors. Advanced Materials, 2016, 28, 4105-4110.	11.1	171
63	In situ synthesis of gold nanostars within liposomes for controlled drug release and photoacoustic imaging. Science China Materials, 2016, 59, 892-900.	3.5	21
64	Laser-processed graphene based micro-supercapacitors for ultrathin, rollable, compact and designable energy storage components. Nano Energy, 2016, 26, 276-285.	8.2	135
65	An ultrafast, high capacity and superior longevity Ni/Zn battery constructed on nickel nanowire array film. Nano Energy, 2016, 30, 900-908.	8.2	188
66	$MoO < sub>3 < / sub> @Ni \ nanowire \ array \ hierarchical \ anode \ for \ high \ capacity \ and \ superior \ longevity \ all-metal-oxide \ asymmetric \ supercapacitors. RSC \ Advances, 2016, 6, 110112-110119.$	1.7	23
67	Ozone/graphene oxide catalytic oxidation: a novel method to degrade emerging organic contaminant N, N-diethyl-m-toluamide (DEET). Scientific Reports, 2016, 6, 31405.	1.6	23
68	Vapor-Phase Polymerized Poly(3,4-Ethylenedioxythiophene) on a Nickel Nanowire Array Film: Aqueous Symmetrical Pseudocapacitors with Superior Performance. PLoS ONE, 2016, 11, e0166529.	1.1	14
69	Conformal Pad-Printing Electrically Conductive Composites onto Thermoplastic Hemispheres: Toward Sustainable Fabrication of 3-Cents Volumetric Electrically Small Antennas. PLoS ONE, 2015, 10, e0136939.	1.1	12
70	Silver dendrite-based nanocomposites for current cutting-off fuse. , 2015, , .		0
71	Eco-friendly and cost-effective superabsorbent sodium polyacrylate composites for environmental remediation. Journal of Materials Science, 2015, 50, 5799-5808.	1.7	34
72	Combining Fast Li-Ion Battery Cycling with Large Volumetric Energy Density: Grain Boundary Induced High Electronic and Ionic Conductivity in Li ₄ Ti ₅ O ₁₂ Spheres of Densely Packed Nanocrystallites. Chemistry of Materials, 2015, 27, 5647-5656.	3.2	142

#	Article	IF	CITATIONS
73	Shape-Tailorable Graphene-Based Ultra-High-Rate Supercapacitor for Wearable Electronics. ACS Nano, 2015, 9, 5636-5645.	7.3	127
74	Flexible copper wires through galvanic replacement of zinc paste: a highly cost-effective technology for wiring flexible printed circuits. Journal of Materials Chemistry C, 2015, 3, 8329-8335.	2.7	18
75	Fractal dendrite-based electrically conductive composites for laser-scribed flexible circuits. Nature Communications, 2015, 6, 8150.	5.8	73
76	Stretchable copper wires based on reduction of active metallic nanoparticles and electroplating. , $2015,$		0
77	Future paper based printed circuit boards for green electronics: fabrication and life cycle assessment. Energy and Environmental Science, 2014, 7, 3674-3682.	15.6	136
78	Scalable fabrication of MnO ₂ nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor. Energy and Environmental Science, 2014, 7, 2652-2659.	15.6	247
79	Fluorescence quenching between unbonded graphene quantum dots and gold nanoparticles upon simple mixing. RSC Advances, 2014, 4, 35673-35677.	1.7	31
80	Towards Practical Application of Paper based Printed Circuits: Capillarity Effectively Enhances Conductivity of the Thermoplastic Electrically Conductive Adhesives. Scientific Reports, 2014, 4, 6275.	1.6	42
81	Co-electro-deposition of the MnO2–PEDOT:PSS nanostructured composite for high areal mass, flexible asymmetric supercapacitor devices. Journal of Materials Chemistry A, 2013, 1, 12432.	5.2	163
82	Printed electrically conductive composites: conductive filler designs and surface engineering. Journal of Materials Chemistry C, 2013, 1, 4052.	2.7	120
83	Scalable synthesis of the mono-dispersed silver micro-dendrites and their applications in the ultralow cost printed electrically conductive adhesives. , 2013, , .		4
84	Improvement of the thermal conductivity by surface iodination. , 2013, , .		0
85	Investigation of a Biocompatible Polyurethane-Based Isotropically Conductive Adhesive for UHF RFID Tag Antennas. Journal of Electronic Materials, 2011, 40, 78-84.	1.0	14
86	Rheological study on highâ€density polyethylene/organoclay composites. Polymer Engineering and Science, 2011, 51, 133-142.	1.5	13
87	Waterâ€Based Isotropically Conductive Adhesives: Towards Green and Lowâ€Cost Flexible Electronics. Advanced Functional Materials, 2011, 21, 4582-4588.	7.8	88
88	Silver Nanowires: From Scalable Synthesis to Recyclable Foldable Electronics. Advanced Materials, 2011, 23, 3052-3056.	11.1	297
89	Silver Surface Iodination for Enhancing the Conductivity of Conductive Composites. Advanced Functional Materials, 2010, 20, 2580-2587.	7.8	65
90	Silver Surface Iodination for Enhancing the Conductivity of Conductive Composites. Advanced Functional Materials, 2010, 20, n/a-n/a.	7.8	2

#	Article	IF	CITATIONS
91	A facile chemical approach for preparing a SERS active silver substrate. Physical Chemistry Chemical Physics, 2010, 12, 14459.	1.3	26
92	Flexible thermoplastic conductive adhesive with high reliability. , 2009, , .		0
93	UV-activated surface modification of photo-cleavage polymer for contact printing applications. , 2008,		1
94	Using novel materials to enhance the efficiency of conductive polymer. , 2008, , .		11