Yury A Bochkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8434789/publications.pdf

Version: 2024-02-01

30	1,998	18	29
papers	citations	h-index	g-index
30	30	30	2732
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nasopharyngeal metatranscriptome profiles of infants with bronchiolitis and risk of childhood asthma: a multicentre prospective study. European Respiratory Journal, 2022, 60, 2102293.	3.1	23
2	Detection of Respiratory Syncytial Virus or Rhinovirus Weeks After Hospitalization for Bronchiolitis and the Risk of Recurrent Wheezing. Journal of Infectious Diseases, 2021, 223, 268-277.	1.9	10
3	Integrated-omics endotyping of infants with rhinovirus bronchiolitis and risk of childhood asthma. Journal of Allergy and Clinical Immunology, 2021, 147, 2108-2117.	1.5	45
4	Increased ILâ€6 and Potential ILâ€6 transâ€signalling in the airways after an allergen challenge. Clinical and Experimental Allergy, 2021, 51, 564-573.	1.4	9
5	#91: Human Antibodies Neutralize Enterovirus D68 and Protect Against Infection and Paralytic Disease. Journal of the Pediatric Infectious Diseases Society, 2021, 10, S12-S12.	0.6	O
6	Defining Age-specific Relationships of Respiratory Syncytial Virus and Rhinovirus Species in Hospitalized Children With Acute Wheeze. Pediatric Infectious Disease Journal, 2021, 40, 873-879.	1.1	5
7	Rhinovirus C15 Induces Airway Hyperresponsiveness via Calcium Mobilization in Airway Smooth Muscle. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 310-318.	1.4	14
8	Rhinovirus Type in Severe Bronchiolitis and the Development of Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 588-595.e4.	2.0	53
9	Rhinovirus C Is Associated With Severe Wheezing and Febrile Respiratory Illness in Young Children. Pediatric Infectious Disease Journal, 2020, 39, 283-286.	1.1	18
10	Association of rhinovirus species with nasopharyngeal metabolome in bronchiolitis infants: A multicenter study. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2379-2383.	2.7	13
11	Respiratory viruses are associated with serum metabolome among infants hospitalized for bronchiolitis: A multicenter study. Pediatric Allergy and Immunology, 2020, 31, 755-766.	1.1	15
12	Human antibodies neutralize enterovirus D68 and protect against infection and paralytic disease. Science Immunology, 2020, 5, .	5.6	32
13	Association of Rhinovirus C Bronchiolitis and Immunoglobulin E Sensitization During Infancy With Development of Recurrent Wheeze. JAMA Pediatrics, 2019, 173, 544.	3.3	64
14	Association between rhinovirus species and nasopharyngeal microbiota in infants with severe bronchiolitis. Journal of Allergy and Clinical Immunology, 2019, 143, 1925-1928.e7.	1.5	26
15	Rhinovirus Species in Children With Severe Bronchiolitis. Pediatric Infectious Disease Journal, 2019, 38, e59-e62.	1.1	14
16	Association of rhinovirus species with common cold and asthma symptoms and bacterial pathogens. Journal of Allergy and Clinical Immunology, 2018, 141, 822-824.e9.	1.5	36
17	TLR-7 Stress Signaling in Differentiating and Mature Eosinophils Is Mediated by the Prolyl Isomerase Pin1. Journal of Immunology, 2018, 201, 3503-3513.	0.4	9
18	Airway Microbiota Dynamics Uncover a Critical Window for Interplay of Pathogenic Bacteria and Allergy in Childhood Respiratory Disease. Cell Host and Microbe, 2018, 24, 341-352.e5.	5.1	146

#	Article	IF	CITATIONS
19	Community-acquired rhinovirus infection is associated with changes in the airway microbiome. Journal of Allergy and Clinical Immunology, 2017, 140, 312-315.e8.	1.5	26
20	Neonatal immune response to rhinovirus A16 has diminished dendritic cell function and increased B cell activation. PLoS ONE, 2017, 12, e0180664.	1.1	8
21	RNA-sequencing analysis of lung primary fibroblast response to eosinophil-degranulation products predicts downstream effects on inflammation, tissue remodeling and lipid metabolism. Respiratory Research, 2017, 18, 188.	1.4	23
22	Rhinovirus species and clinical characteristics in the first wheezing episode in children. Journal of Medical Virology, 2016, 88, 2059-2068.	2. 5	30
23	Rhinovirusâ€C detection in children presenting with acute respiratory infection to hospital in Brazil. Journal of Medical Virology, 2016, 88, 58-63.	2.5	22
24	Mutations in VP1 and 3A proteins improve binding and replication of rhinovirus C15 in HeLa-E8 cells. Virology, 2016, 499, 350-360.	1.1	32
25	A polyvalent inactivated rhinovirus vaccine is broadly immunogenic in rhesus macaques. Nature Communications, 2016, 7, 12838.	5. 8	55
26	Rhinoviruses and Their Receptors: Implications for Allergic Disease. Current Allergy and Asthma Reports, 2016, 16, 30.	2.4	67
27	The Infant Nasopharyngeal Microbiome Impacts Severity of Lower Respiratory Infection and Risk of Asthma Development. Cell Host and Microbe, 2015, 17, 704-715.	5.1	721
28	Detection of pathogenic bacteria during rhinovirus infection is associated with increased respiratory symptoms and asthma exacerbations. Journal of Allergy and Clinical Immunology, 2014, 133, 1301-1307.e3.	1.5	226
29	Improved Molecular Typing Assay for Rhinovirus Species A, B, and C. Journal of Clinical Microbiology, 2014, 52, 2461-2471.	1.8	79
30	Molecular modeling, organ culture and reverse genetics for a newly identified human rhinovirus C. Nature Medicine, 2011, 17, 627-632.	15.2	177