Gabriel A Trueba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8434523/publications.pdf

Version: 2024-02-01

186265 223800 2,817 116 28 46 citations h-index g-index papers 140 140 140 4526 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nature Ecology and Evolution, 2017, 1, 91.	7.8	262
2	Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA). World Journal of Emergency Surgery, 2016, 11 , 33 .	5.0	130
3	Environmental change and infectious disease: How new roads affect the transmission of diarrheal pathogens in rural Ecuador. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19460-19465.	7.1	117
4	Cell aggregation: a mechanism of pathogenic Leptospira to survive in fresh water. International Microbiology, 2004, 7, 35-40.	2.4	116
5	Characterization of novel VP7, VP4, and VP6 genotypes of a previously untypeable group A rotavirus. Virology, 2009, 385, 58-67.	2.4	105
6	Synergistic Effects Between Rotavirus and Coinfecting Pathogens on Diarrheal Disease: Evidence from a Community-based Study in Northwestern Ecuador. American Journal of Epidemiology, 2012, 176, 387-395.	3.4	98
7	Characterization of outer membrane and secreted proteins of Leptospira interrogans serovar pomona. Microbial Pathogenesis, 1991, 10, 311-322.	2.9	74
8	A case of SARS-CoV-2 reinfection in Ecuador. Lancet Infectious Diseases, The, 2021, 21, e142.	9.1	72
9	COVID-19 Re-Infection by a Phylogenetically Distinct SARS-CoV-2 Variant, First Confirmed Event in South America SSRN Electronic Journal, 0 , , .	0.4	69
10	Impact of Rainfall on Diarrheal Disease Risk Associated with Unimproved Water and Sanitation. American Journal of Tropical Medicine and Hygiene, 2014, 90, 705-711.	1.4	61
11	Detection of Zoonotic Enteropathogens in Children and Domestic Animals in a Semirural Community in Ecuador. Applied and Environmental Microbiology, 2016, 82, 4218-4224.	3.1	59
12	Antibiotic Resistance in Animal and Environmental Samples Associated with Small-Scale Poultry Farming in Northwestern Ecuador. MSphere, 2016, 1, .	2.9	57
13	High Prevalence of IntermediateLeptospiraspp. DNA in Febrile Humans from Urban and Rural Ecuador. Emerging Infectious Diseases, 2015, 21, 2141-2147.	4.3	51
14	Detection of Dengue Virus Neutralizing Antibodies in Bats from Costa Rica and Ecuador. Journal of Medical Entomology, 2000, 37, 965-967.	1.8	50
15	Interactions of Leptospira with Environmental Bacteria from Surface Water. Current Microbiology, 2011, 62, 1802-1806.	2.2	48
16	Diverse Commensal Escherichia coli Clones and Plasmids Disseminate Antimicrobial Resistance Genes in Domestic Animals and Children in a Semirural Community in Ecuador. MSphere, 2019, 4, .	2.9	45
17	High Leptospira Diversity in Animals and Humans Complicates the Search for Common Reservoirs of Human Disease in Rural Ecuador. PLoS Neglected Tropical Diseases, 2016, 10, e0004990.	3.0	44
18	Identifying Etiological Agents Causing Diarrhea in Low Income Ecuadorian Communities. American Journal of Tropical Medicine and Hygiene, 2014, 91, 563-569.	1.4	43

#	Article	IF	CITATIONS
19	Household effectiveness vs. laboratory efficacy of point-of-use chlorination. Water Research, 2014, 54, 69-77.	11.3	43
20	Small-Scale Food Animal Production and Antimicrobial Resistance: Mountain, Molehill, or Something in-between?. Environmental Health Perspectives, 2017, 125, 104501.	6.0	43
21	Environmental Spread of Extended Spectrum Beta-Lactamase (ESBL) Producing <i>Escherichia coli</i> and ESBL Genes among Children and Domestic Animals in Ecuador. Environmental Health Perspectives, 2021, 129, 27007.	6.0	43
22	HIGH PREVALENCE OF ENTEROINVASIVE ESCHERICHIA COLI ISOLATED IN A REMOTE REGION OF NORTHERN COASTAL ECUADOR. American Journal of Tropical Medicine and Hygiene, 2007, 76, 528-533.	1.4	43
23	Characterization of the periplasmic flagellum proteins of Leptospira interrogans. Journal of Bacteriology, 1992, 174, 4761-4768.	2.2	42
24	Antibiotic Resistome Associated with Small-Scale Poultry Production in Rural Ecuador. Environmental Science & Environmental Sc	10.0	40
25	The Role of Mobile Genetic Elements in the Spread of Antimicrobial-Resistant Escherichia coli From Chickens to Humans in Small-Scale Production Poultry Operations in Rural Ecuador. American Journal of Epidemiology, 2018, 187, 558-567.	3.4	39
26	Effects of Selection Pressure and Genetic Association on the Relationship between Antibiotic Resistance and Virulence in Escherichia coli. Antimicrobial Agents and Chemotherapy, 2015, 59, 6733-6740.	3.2	38
27	Factors Obscuring the Role of E. coli from Domestic Animals in the Global Antimicrobial Resistance Crisis: An Evidence-Based Review. International Journal of Environmental Research and Public Health, 2020, 17, 3061.	2.6	34
28	Metagenomic Signatures of Gut Infections Caused by Different <i>Escherichia coli</i> Pathotypes. Applied and Environmental Microbiology, 2019, 85, .	3.1	33
29	Molecular phylogeny of 42 species of <i>Culicoides </i> (Diptera, Ceratopogonidae) from three continents. Parasite, 2017, 24, 23.	2.0	31
30	High prevalence of enteroinvasive Escherichia coli isolated in a remote region of northern coastal Ecuador. American Journal of Tropical Medicine and Hygiene, 2007, 76, 528-33.	1.4	31
31	Healthcare-associated respiratory tract infection and colonization in an intensive care unit caused by Burkholderia cepacia isolated in mouthwash. International Journal of Infectious Diseases, 2014, 29, 96-99.	3.3	29
32	Mobile genetic elements associated with carbapenemase genes in South American Enterobacterales. Brazilian Journal of Infectious Diseases, 2020, 24, 231-238.	0.6	27
33	In-roads to the spread of antibiotic resistance: regional patterns of microbial transmission in northern coastal Ecuador. Journal of the Royal Society Interface, 2012, 9, 1029-1039.	3.4	25
34	<i>Plesiomonas shigelloides</i> Infection, Ecuador, 2004–2008. Emerging Infectious Diseases, 2012, 18, 322-324.	4.3	23
35	Random Primed Gene Walking PCR: A Simple Procedure to Retrieve Nucleotide Fragments Adjacent to Known DNA Sequences. BioTechniques, 1996, 21, 20.	1.8	22
36	Many Neglected Tropical Diseases May Have Originated in the Paleolithic or Before: New Insights from Genetics. PLoS Neglected Tropical Diseases, 2012, 6, e1393.	3.0	22

#	Article	IF	Citations
37	Spatial Variability of Escherichia coli in Rivers of Northern Coastal Ecuador. Water (Switzerland), 2015, 7, 818-832.	2.7	22
38	PUP MORTALITY AND EVIDENCE FOR PATHOGEN EXPOSURE IN GALAPAGOS SEA LIONS (<i>zalophus) Tj etQq0 53, 491-498.</i>	0 0 rgBT 0.8	/Overlock 10 22
39	Detection of Fasciola hepatica infection in a community located in the Ecuadorian Andes American Journal of Tropical Medicine and Hygiene, 2000, 62, 518-518.	1.4	22
40	Evaluation of an Enzyme Immunoassay for Diagnosis of Bovine Leptospirosis Caused by <i>Leptospira Interrogans</i> Serovar <i>Hardjo</i> Type Hardjo-Bovis. Journal of Veterinary Diagnostic Investigation, 1990, 2, 323-329.	1.1	21
41	Symptomatic and Subclinical Infection with Rotavirus P[8]G9, Rural Ecuador. Emerging Infectious Diseases, 2007, 13, 574-580.	4.3	21
42	Isolation of Oropouche Virus from Febrile Patient, Ecuador. Emerging Infectious Diseases, 2018, 24, 935-937.	4.3	21
43	Bacteria associated with human saliva are major microbial components of Ecuadorian indigenous beers (<i>chicha</i>). PeerJ, 2016, 4, e1962.	2.0	21
44	High Prevalence of Extended-Spectrum Beta-Lactamase CTX-M–Producing Escherichia coli in Small-Scale Poultry Farming in Rural Ecuador. American Journal of Tropical Medicine and Hygiene, 2019, 100, 374-376.	1.4	20
45	Prevalence of human papillomavirus types in cervical cancerous and precancerous lesions of Ecuadorian women. Journal of Medical Virology, 2016, 88, 144-152.	5.0	19
46	Transition in the Cause of Fever from Malaria to Dengue, Northwestern Ecuador, 1990–2011. Emerging Infectious Diseases, 2013, 19, 1642-1645.	4.3	17
47	First case of New Delhi metallo- \hat{l}^2 -lactamase in Klebsiella pneumoniae from Ecuador: An update for South America. International Journal of Infectious Diseases, 2017, 65, 119-121.	3.3	17
48	Impacts of small-scale chicken farming activity on antimicrobial-resistant Escherichia coli carriage in backyard chickens and children in rural Ecuador. One Health, 2019, 8, 100112.	3.4	17
49	Evolutionary Dynamics of Oropouche Virus in South America. Journal of Virology, 2020, 94, .	3.4	17
50	A study of a population of Nyssomyia trapidoi (Diptera: Psychodidae) caught on the Pacific coast of Ecuador. Parasites and Vectors, 2012, 5, 144.	2.5	16
51	Diverse Escherichia coli lineages from domestic animals carrying colistin resistance gene mcr-1 in an Ecuadorian household. Journal of Global Antimicrobial Resistance, 2020, 22, 63-67.	2.2	16
52	Leptospira in river and soil in a highly endemic area of Ecuador. BMC Microbiology, 2021, 21, 17.	3.3	16
53	Extended-Spectrum Beta-Lactamase Producing-Escherichia coli Isolated From Irrigation Waters and Produce in Ecuador. Frontiers in Microbiology, 2021, 12, 709418.	3.5	16
54	Rapid changes in rotaviral genotypes in Ecuador. Journal of Medical Virology, 2009, 81, 2109-2113.	5.0	15

#	Article	IF	CITATIONS
55	Brucellosis in Dairy Cattle and Goats in Northern Ecuador. American Journal of Tropical Medicine and Hygiene, 2014, 90, 712-715.	1.4	14
56	Population structure and genetic diversity of Mycobacterium tuberculosis in Ecuador. Scientific Reports, 2020, 10, 6237.	3.3	14
57	Genomic epidemiology of SARS-CoV-2 transmission lineages in Ecuador. Virus Evolution, 2021, 7, veab051.	4.9	14
58	Changes in dominant <i>Escherichia coli</i> and antimicrobial resistance after 24Âhr in fecal matter. MicrobiologyOpen, 2019, 8, e00643.	3.0	12
59	Household coping strategies associated with unreliable water supplies and diarrhea in Ecuador, an upper-middle-income country. Water Research, 2020, 170, 115269.	11.3	12
60	Morphometric and molecular characterization of the series Guyanensis (Diptera, Psychodidae,) Tj ETQq0 0 0 rgBT Genetics and Evolution, 2012, 12, 966-977.	Overlock 2.3	10 Tf 50 54
61	Hyperendemic <i>Campylobacter jejuni</i> in guinea pigs (<i>Cavia porcellus</i>) raised for food in a semiâ€rural community of Quito, Ecuador. Environmental Microbiology Reports, 2016, 8, 382-387.	2.4	11
62	NDM-1 carbapenemase in Acinetobacter baumannii sequence type 32 in Ecuador. New Microbes and New Infections, 2019, 29, 100526.	1.6	11
63	Locals get travellers' diarrhoea too: risk factors for diarrhoeal illness and pathogenic <i>Escherichia coli</i> infection across an urbanâ€rural gradient in Ecuador. Tropical Medicine and International Health, 2019, 24, 205-219.	2.3	11
64	A dengue outbreak in a rural community in Northern Coastal Ecuador: An analysis using unmanned aerial vehicle mapping. PLoS Neglected Tropical Diseases, 2021, 15, e0009679.	3.0	11
65	A cheA cheW operon in Borrelia burgdorferi, the agent of Lyme disease. Research in Microbiology, 1997, 148, 191-200.	2.1	10
66	Prevalence, Drug Resistance, and Genotypic Diversity of the <i>Mycobacterium tuberculosis</i> Family in Ecuador. Microbial Drug Resistance, 2019, 25, 931-937.	2.0	10
67	Oropouche virus cases identified in Ecuador using an optimised qRT-PCR informed by metagenomic sequencing. PLoS Neglected Tropical Diseases, 2020, 14, e0007897.	3.0	10
68	DNA Multi-Marker Genotyping and CIAS Morphometric Phenotyping of Fasciola gigantica-Sized Flukes from Ecuador, with an Analysis of the Radix Absence in the New World and the Evolutionary Lymnaeid Snail Vector Filter. Animals, 2021, 11, 2495.	2.3	10
69	Adapting Rapid Diagnostic Tests to Detect Historical Dengue Virus Infections. Frontiers in Immunology, 2021, 12, 703887.	4.8	9
70	Unexpected distribution of the fluoroquinolone-resistance gene qnrB in Escherichia coli isolates from different human and poultry origins in Ecuador. International Microbiology, 2015, 18, 85-90.	2.4	9
71	Distribution of Enteroinvasive and Enterotoxigenic Escherichia coli Across Space and Time in Northwestern Ecuador. American Journal of Tropical Medicine and Hygiene, 2016, 94, 276-284.	1.4	8
72	The Role of the Microbiome in the Relationship of Asthma and Affective Disorders. Advances in Experimental Medicine and Biology, 2016, 874, 263-288.	1.6	8

#	Article	IF	CITATIONS
73	<i>Salmonella</i> grows massively and aerobically in chicken faecal matter. Microbial Biotechnology, 2020, 13, 1678-1684.	4.2	7
74	Gut Microbiome Changes with Acute Diarrheal Disease in Urban Versus Rural Settings in Northern Ecuador. American Journal of Tropical Medicine and Hygiene, 2021, 104, 2275-2285.	1.4	7
75	Social and Environmental Determinants of Community-Acquired Antimicrobial-Resistant Escherichia coli in Children Living in Semirural Communities of Quito, Ecuador. American Journal of Tropical Medicine and Hygiene, 2021, 105, 600-610.	1.4	7
76	Spatial Exposure of Agricultural Antimicrobial Resistance in Relation to Free-Ranging Domestic Chicken Movement Patterns among Agricultural Communities in Ecuador. American Journal of Tropical Medicine and Hygiene, 2020, 103, 1803-1809.	1.4	7
77	Gut microbiome, enteric infections and child growth across a rural–urban gradient: protocol for the ECoMiD prospective cohort study. BMJ Open, 2021, 11, e046241.	1.9	7
78	Characterization of IS1501mutants of Leptospira interrogansserovar pomona. FEMS Microbiology Letters, 2005, 248, 199-205.	1.8	6
79	First report of a clinical isolate of blaOXA-48- carbapenemase producing Raoultella ornithinolytica in South America. Revista Argentina De Microbiologia, 2020, 52, 82-83.	0.7	6
80	Characterization of <i>bla</i> _{KPC-2} -Harboring <i>Klebsiella pneumoniae</i> Isolates and Mobile Genetic Elements from Outbreaks in a Hospital in Ecuador. Microbial Drug Resistance, 2021, 27, 752-759.	2.0	6
81	Caretaker knowledge, attitudes, and practices (KAP) and carriage of extended-spectrum beta-lactamase-producing E. coli (ESBL-EC) in children in Quito, Ecuador. Antimicrobial Resistance and Infection Control, 2021, 10, 2.	4.1	6
82	Treatment of acid rock drainage using a sulphate-reducing bioreactor with a limestone precolumn. Environmental Technology (United Kingdom), 2023, 44, 185-196.	2.2	6
83	Determinants of Childhood Zoonotic Enteric Infections in a Semirural Community of Quito, Ecuador. American Journal of Tropical Medicine and Hygiene, 2020, 102, 1269-1278.	1.4	6
84	First detection of SARS-CoV-2 variant B.1.1.529 (Omicron) in Ecuador. New Microbes and New Infections, 2022, 45, 100951.	1.6	6
85	Mircobial community composition in petroleum-contaminated and uncontaminated soil from Francisco de Orellana, in the northern Ecuadorian Amazon. International Microbiology, 2008, 11, 121-6.	2.4	6
86	Draft Genome Sequence of the First Pathogenic Leptospira Isolates from Ecuador. Genome Announcements, 2016, 4, .	0.8	5
87	First Complete Genome Sequences of Zika Virus Isolated from Febrile Patient Sera in Ecuador. Genome Announcements, 2017, 5, .	0.8	5
88	Escherichia coliO157:H7 in Ecuador: Animal Reservoirs, Yet No Human Disease. Vector-Borne and Zoonotic Diseases, 2013, 13, 295-298.	1.5	4
89	SARS-CoV-2 detection and sequencing in heart tissue associated with myocarditis and persistent arrhythmia: A case report. IDCases, 2021, 25, e01187.	0.9	4
90	Dengue Serotype Differences in Urban and Semi-rural Communities in Ecuador. Avances En Ciencias E IngenierÃas, 2018, 10, .	0.1	4

#	Article	IF	CITATIONS
91	Risk factors for third-generation cephalosporin-resistant and extended-spectrum β-lactamase-producing Escherichia coli carriage in domestic animals of semirural parishes east of Quito, Ecuador. PLOS Global Public Health, 2022, 2, e0000206.	1.6	4
92	<i>Campylobacter fetus</i> Bacteremia in a Healthy Patient Returning from a Trip to the Ecuadorian Amazonia. Zoonoses and Public Health, 2017, 64, 391-393.	2.2	3
93	Evolutionary changes of an intestinal <i>Lactobacillus reuteri</i> during probiotic manufacture. MicrobiologyOpen, 2020, 9, e972.	3.0	3
94	Achieving high immunogenicity against poliovirus with fractional doses of inactivated poliovirus vaccine in Ecuador-results from a cross-sectional serological survey. The Lancet Regional Health Americas, 2022, 11, 100235.	2.6	3
95	A longitudinal study of dominant E. coli lineages and antimicrobial resistance in the gut of children living in an upper middle-income country. Journal of Global Antimicrobial Resistance, 2022, 29, 136-140.	2.2	3
96	The impact of genetic recombination on pathogenic Leptospira. Infection, Genetics and Evolution, 2022, 102, 105313.	2.3	3
97	Cloning of the pfaP gene of Leptospira borgpetersenii. Gene, 1995, 160, 133-134.	2.2	2
98	Characterization of a lipopolysaccharide mutant of Leptospira derived by growth in the presence of an anti-lipopolysaccharide monoclonal antibody. FEMS Microbiology Letters, 2010, 309, no-no.	1.8	2
99	Country-wide rapid screening for the Mycobacterium tuberculosis Beijing sublineage in Ecuador using a single-nucleotide polymorphism-polymerase chain reaction method. International Journal of Mycobacteriology, 2019, 8, 366.	0.6	2
100	Removal of antimicrobial prophylaxis and its effect on swine carriage of antimicrobial-resistant coliforms. Science Progress, 2021, 104, 368504211050279.	1.9	2
101	Staphylococcus aureus outbreak in the intensive care unit of the largest public hospital in Quito, Ecuador. International Microbiology, 2013, 16, 81-6.	2.4	2
102	Construcci \tilde{A}^3 n y operaci \tilde{A}^3 n de una c \tilde{A}_i mara anaer \tilde{A}^3 bica de bajo costo para la siembra y el cultivo de bacterias sulfato reductoras. Avances En Ciencias E Ingenier \tilde{A} as, 2019, 11, .	0.1	1
103	Dynamics of Microbial Communities during the Removal of Copper and Zinc in a Sulfate-Reducing Bioreactor with a Limestone Pre-Column System. International Journal of Environmental Research and Public Health, 2022, 19, 1484.	2.6	1
104	Epidemiological interpretation of fingerprinting profiles from leptospiral isolates. Letters in Applied Microbiology, 2006, 42, 432-432.	2.2	0
105	Bhavnani et al. Respond to "Assessing Mechanistic Interaction". American Journal of Epidemiology, 2012, 176, 400-401.	3.4	0
106	Author's responses to the comment by Daniele Lantagne on "Household effectiveness vs. laboratory efficacy of point-of-use chlorination― Water Research, 2015, 69, 331-333.	11.3	0
107	Response to the letter to the editor. Journal of Medical Virology, 2016, 88, 2022-2022.	5.0	0
108	Metagenome of a Bronchoalveolar Lavage Fluid Sample from a Confirmed COVID-19 Case in Quito, Ecuador, Obtained Using Oxford Nanopore MinION Technology. Microbiology Resource Announcements, 2020, 9, .	0.6	0

#	Article	IF	CITATIONS
109	Programa de Telesalud para pacientes cr \tilde{A}^3 nicos de sectores rurales de Pichincha: prevenci \tilde{A}^3 n y promoci \tilde{A}^3 n en salud en \tilde{A} ©poca de pandemia por Covid-19. Ensayo. Esferas, 2021, 2, 32.	0.0	О
110	Pseudomonas aeruginosa transition from environmental generalist to human pathogen. Avances En Ciencias E IngenierAas, 2021, 13, 11.	0.1	0
111	The Origin of Human Pathogens. , 2014, , 3-11.		O
112	El rol de la respiración aeróbica en el ciclo de vida de Escherichia coli : Implicaciones para la salud pública. Avances En Ciencias E IngenierÃas, 2015, 7, .	0.1	0
113	Achieving High Immunogenicity Against Poliovirus With Fractional Doses of Inactivated Poliovirus Vaccine in Ecuador. SSRN Electronic Journal, 0, , .	0.4	0
114	Title is missing!. , 2020, 14, e0007897.		0
115	Title is missing!. , 2020, 14, e0007897.		0
116	Title is missing!. , 2020, 14, e0007897.		0