Xin Tang

List of Publications by Year in descending order

Source: https:|/exaly.com/author-pdf/843432/publications.pdf
Version: 2024-02-01

1	Coercivity and its thermal stability of Nd Fe B hot-deformed magnets enhanced by the eutectic grain boundary diffusion process. Acta Materialia, 2018, 161, 171-181.	7.9	96
2	Coercivity enhancement of hot-deformed $\mathrm{Ce}-\mathrm{Fe}-\mathrm{B}$ magnets by grain boundary infiltration of $\mathrm{Nd}-\mathrm{Cu}$ eutectic alloy. Acta Materialia, 2018, 144, 884-895.	7.9	89
3	Magnetic refrigeration material operating at a full temperature range required for hydrogen liquefaction. Nature Communications, 2022, 13, 1817.	12.8	64
4	Improved coercivity and squareness in bulk hot-deformed Ndâ€"Feâ€"B magnets by two-step eutectic grain boundary diffusion process. Acta Materialia, 2021, 203, 116479.	7.9	51
5	Thermally-stable high coercivity Ce-substituted hot-deformed magnets with 20\% Nd reduction. Acta Materialia, 2020, 190, 8-15.	7.9	47
6	Enhanced texture in die-upset nanocomposite magnets by Nd-Cu grain boundary diffusion. Applied Physics Letters, 2013, 102, .	3.3	43
7	Coercivities of hot-deformed magnets processed from amorphous and nanocrystalline precursors. Acta Materialia, 2017, 123, 1-10.	7.9	39
8	Relationship between the thermal stability of coercivity and the aspect ratio of grains in Nd-Fe-B magnets: Experimental and numerical approaches. Acta Materialia, 2020, 183, 408-417.	7.9	31
9	Impact of Ndâ $€^{\text {"C Cu }}$ diffusion on microstructure and coercivity in hot-pressed and die-upset nanocomposite magnets. Scripta Materialia, 2014, 88, 49-52.	5.2	30

19
20

Mechanism of texture enhancement in nanocomposite magnets during process of die upsetting
5.5

17
coupled with Ndâ€"Cu grain boundary diffusion. Journal of Alloys and Compounds, 2015, 623, 386-392.

Tuning transition temperature of magnetocaloric Mn1.8Fe0.2(PO.59SiO.41) alloys for cryogenic
5.2 magnetic refrigeration. Scripta Materialia, 2020, 183, 127-132.

Significant coercivity enhancement of hot-deformed bulk magnets by two-step diffusion process using
5.2

21 Significant coercivity enhancement of hot-deformed bulk magne
16

Phase relations and extrinsic magnetic properties of Smâ $€$ "(Fe,Co)â $\epsilon^{\prime \prime} T i a ̂ \notin "(\mathrm{Ga})$-based alloys for ThMn12-type permanent magnets. Journal of Magnetism and Magnetic Materials, 2021, 529, 167866.
2.3

15

Influence of Ti addition on microstructure and magnetic properties of a heavy-rare-earth-free Nd -Fe-B
Influence of Ti addition on microstructure and magnetic properties of a heavy
sintered magnet. Journal of Alloys and Compounds, 2019, 806, 1267-1275.
5.5

14

24 Machine learning assisted development of Fe2P-type magnetocaloric compounds for cryogenic applications. Acta Materialia, 2022, 232, 117942.
(Nd,La,Ce)-Fe-B hot-deformed magnets for application of variable-magnetic-force motors. Acta
Materialia, 2022, 228, 117747.
7.9
(Pr0.75Ce0.25)-Fe-B hot-deformed magnets for cryogenic applications. Scripta Materialia, 2021, 194, 113648.

Polycrystalline Nd2Fe14B/̂̂̀-Fe nanocomposite flakes with a sub-micro/nanometre thickness prepared by surfactant-assisted high-energy ball milling. Journal of Alloys and Compounds, 2015, 644, 562-569.

```
Development of Co-lean (Sm,Y)(Fe,Co,Ti)<sub> 12</sub> compounds with large saturation
magnetization. Applied Physics Express, 2022, 15, 045505.
```

Influence of LRE (Ce, Y, and La) on microstructure and magnetic properties of (Nd0.8LREO.2) â€"Feấ ${ }^{\text {" } B}$ hot-deformed magnets. AIP Advances, 2021, 11, 115118.

