## Jong-Wook Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8434199/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                           | lF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Controlled Synthesis of Pd–Pt Alloy Hollow Nanostructures with Enhanced Catalytic Activities for<br>Oxygen Reduction. ACS Nano, 2012, 6, 2410-2419.                                                               | 14.6 | 348       |
| 2  | Atomicâ€Distributionâ€Dependent Electrocatalytic Activity of Au–Pd Bimetallic Nanocrystals.<br>Angewandte Chemie - International Edition, 2011, 50, 8876-8880.                                                    | 13.8 | 201       |
| 3  | Ultrathin Freeâ€Standing Ternaryâ€Alloy Nanosheets. Angewandte Chemie - International Edition, 2016, 55,<br>2753-2758.                                                                                            | 13.8 | 197       |
| 4  | One-Pot Synthesis of Trimetallic Au@PdPt Core–Shell Nanoparticles with High Catalytic Performance.<br>ACS Nano, 2013, 7, 7945-7955.                                                                               | 14.6 | 192       |
| 5  | Hexoctahedral Au Nanocrystals with High-Index Facets and Their Optical and Surface-Enhanced Raman<br>Scattering Properties. Journal of the American Chemical Society, 2012, 134, 4565-4568.                       | 13.7 | 155       |
| 6  | Metal–Semiconductor Heteronanocrystals with Desired Configurations for Plasmonic<br>Photocatalysis. Journal of the American Chemical Society, 2016, 138, 15766-15773.                                             | 13.7 | 138       |
| 7  | Synthesis of AuPt Heteronanostructures with Enhanced Electrocatalytic Activity toward Oxygen Reduction. Angewandte Chemie - International Edition, 2010, 49, 10197-10201.                                         | 13.8 | 129       |
| 8  | One-pot synthesis and electrocatalytic activity of octapodal Au–Pd nanoparticles. Chemical<br>Communications, 2011, 47, 2553.                                                                                     | 4.1  | 81        |
| 9  | Multimetallic Alloy Nanotubes with Nanoporous Framework. ACS Nano, 2012, 6, 5659-5667.                                                                                                                            | 14.6 | 74        |
| 10 | Tuning Chemical Interface Damping: Interfacial Electronic Effects of Adsorbate Molecules and Sharp<br>Tips of Single Gold Bipyramids. Nano Letters, 2019, 19, 2568-2574.                                          | 9.1  | 73        |
| 11 | Nobleâ€Metal Nanocrystals with Controlled Facets for Electrocatalysis. Chemistry - an Asian Journal, 2016, 11, 2224-2239.                                                                                         | 3.3  | 56        |
| 12 | Metal–semiconductor yolk–shell heteronanostructures for plasmon-enhanced photocatalytic<br>hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 4068-4078.                                              | 10.3 | 56        |
| 13 | Kinetically Controlled Growth of Polyhedral Bimetallic Alloy Nanocrystals Exclusively Bound by<br>Highâ€Index Facets: Au–Pd Hexoctahedra. Small, 2013, 9, 660-665.                                                | 10.0 | 54        |
| 14 | Oneâ€Pot Synthesis of Carbonâ€Supported Dendritic Pdâ€Au Nanoalloys for Electrocatalytic Ethanol<br>Oxidation. Chemistry - an Asian Journal, 2011, 6, 909-913.                                                    | 3.3  | 51        |
| 15 | Controlled Photoinduced Electron Transfer from InP/ZnS Quantum Dots through Cu Doping: A New<br>Prototype for the Visible-Light Photocatalytic Hydrogen Evolution Reaction. Nano Letters, 2020, 20,<br>6263-6271. | 9.1  | 50        |
| 16 | Ligand Effect of Shape-Controlled β-Palladium Hydride Nanocrystals on Liquid-Fuel Oxidation Reactions. Chemistry of Materials, 2019, 31, 5663-5673.                                                               | 6.7  | 45        |
| 17 | The facet-dependent enhanced catalytic activity of Pd nanocrystals. Chemical Communications, 2014, 50, 9454.                                                                                                      | 4.1  | 43        |
| 18 | Trisoctahedral Au–Pd Alloy Nanocrystals with Highâ€Index Facets and Their Excellent Catalytic<br>Performance. Chemistry - A European Journal, 2012, 18, 16626-16630.                                              | 3.3  | 42        |

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Universal Sulfide-Assisted Synthesis of M–Ag Heterodimers (M = Pd, Au, Pt) as Efficient Platforms for<br>Fabricating Metal–Semiconductor Heteronanostructures. Journal of the American Chemical Society,<br>2014, 136, 5221-5224.        | 13.7 | 42        |
| 20 | One-pot production of ceria nanosheet-supported PtNi alloy nanodendrites with high catalytic performance toward methanol oxidation and oxygen reduction. Journal of Materials Chemistry A, 2020, 8, 25842-25849.                         | 10.3 | 41        |
| 21 | Achieving complete electrooxidation of ethanol by single atomic Rh decoration of Pt nanocubes.<br>Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2112109119.                               | 7.1  | 40        |
| 22 | Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis. Accounts of Chemical Research, 2022, 55, 831-843.                                                                                              | 15.6 | 38        |
| 23 | Metal–semiconductor ternary hybrids for efficient visible-light photocatalytic hydrogen evolution.<br>Journal of Materials Chemistry A, 2018, 6, 13225-13235.                                                                            | 10.3 | 37        |
| 24 | Dendritic Ternary Alloy Nanocrystals for Enhanced Electrocatalytic Oxidation Reactions. ACS Applied Materials & Interfaces, 2017, 9, 44018-44026.                                                                                        | 8.0  | 36        |
| 25 | The surface plasmon-induced hot carrier effect on the catalytic activity of CO oxidation on a<br>Cu <sub>2</sub> O/hexoctahedral Au inverse catalyst. Nanoscale, 2018, 10, 10835-10843.                                                  | 5.6  | 35        |
| 26 | Ultrathin Freeâ€Standing Ternaryâ€Alloy Nanosheets. Angewandte Chemie, 2016, 128, 2803-2808.                                                                                                                                             | 2.0  | 34        |
| 27 | Ultrathinâ€Polyanilineâ€Coated Pt–Ni Alloy Nanooctahedra for the Electrochemical Methanol Oxidation<br>Reaction. Chemistry - A European Journal, 2019, 25, 7185-7190.                                                                    | 3.3  | 30        |
| 28 | Surface elemental distribution effect of Pt-Pb hexagonal nanoplates for electrocatalytic methanol oxidation reaction. Chinese Journal of Catalysis, 2020, 41, 813-819.                                                                   | 14.0 | 25        |
| 29 | Single gold bipyramids with sharp tips as sensitive single particle orientation sensors in biological studies. Nanoscale, 2017, 9, 12060-12067.                                                                                          | 5.6  | 19        |
| 30 | Shape-controlled Pd nanocrystal–polyaniline heteronanostructures with modulated polyaniline<br>thickness for efficient electrochemical ethanol oxidation. Journal of Materials Chemistry A, 2019, 7,<br>22029-22035.                     | 10.3 | 19        |
| 31 | Anisotropic heteronanocrystals of Cu2O–2D MoS2 for efficient visible light driven photocatalysis.<br>Applied Surface Science, 2021, 538, 148159.                                                                                         | 6.1  | 19        |
| 32 | The controlled synthesis of plasmonic nanoparticle clusters as efficient surface-enhanced Raman scattering platforms. Chemical Communications, 2015, 51, 8793-8796.                                                                      | 4.1  | 17        |
| 33 | Controlled synthesis of highly multi-branched Pt-based alloy nanocrystals with high catalytic performance. CrystEngComm, 2016, 18, 2356-2362.                                                                                            | 2.6  | 14        |
| 34 | Synthesis of Pdâ€Pt Ultrathin Assembled Nanosheets as Highly Efficient Electrocatalysts for Ethanol<br>Oxidation. Chemistry - an Asian Journal, 2020, 15, 1324-1329.                                                                     | 3.3  | 12        |
| 35 | Highly Active Binary Exfoliated <scp>MoS<sub>2</sub></scp> Sheet– <scp>Cu<sub>2</sub>O</scp><br>Nanocrystal Hybrids for Efficient Photocatalytic Pollutant Degradation. Bulletin of the Korean<br>Chemical Society, 2020, 41, 1147-1152. | 1.9  | 7         |
| 36 | Sustainable Surface-Enhanced Raman Substrate with Hexagonal Boron Nitride Dielectric Spacer for<br>Preventing Electric Field Cancellation at Au–Au Nanogap. ACS Applied Materials & Interfaces, 2021,<br>13, 42176-42182.                | 8.0  | 7         |

Jong-Wook Hong

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Highly Porous Au–Pt Bimetallic Urchin-Like Nanocrystals for Efficient Electrochemical Methanol<br>Oxidation. Nanomaterials, 2021, 11, 112.                                                            | 4.1  | 6         |
| 38 | Shape- and Size-Controlled Palladium Nanocrystals and Their Electrocatalytic Properties in the Oxidation of Ethanol. Materials, 2021, 14, 2970.                                                       | 2.9  | 6         |
| 39 | Development of Visible-Light-Driven Rh–TiO2–CeO2 Hybrid Photocatalysts for Hydrogen Production.<br>Catalysts, 2021, 11, 848.                                                                          | 3.5  | 6         |
| 40 | Surface Engineering of Palladium Nanocrystals: Decoupling the Activity of Different Surface Sites on<br>Nanocrystal Catalysts. Angewandte Chemie - International Edition, 2022, , .                   | 13.8 | 5         |
| 41 | Shape-dependent adhesion and friction of Au nanoparticles probed with atomic force microscopy.<br>Nanotechnology, 2015, 26, 135707.                                                                   | 2.6  | 4         |
| 42 | Active Bumpy Ptï٤¿Pd Nanocubes for Methanol Oxidation Reaction. Bulletin of the Korean Chemical<br>Society, 2020, 41, 237-240.                                                                        | 1.9  | 4         |
| 43 | Size-controlled palladium dendritic nanocrystals and their electrocatalytic property toward formic acid oxidation and SERS performance. Materials Letters, 2021, 284, 128988.                         | 2.6  | 4         |
| 44 | Controlled Synthesis of Pd Nanocubeâ€Polyaniline Hybrids for Ethanol Oxidation Reaction. Bulletin of<br>the Korean Chemical Society, 2018, 40, 78.                                                    | 1.9  | 3         |
| 45 | Highly Enhanced Electrocatalytic Performances with Dendritic Bimetallic Palladium-Based Nanocrystals. Catalysts, 2021, 11, 1337.                                                                      | 3.5  | 3         |
| 46 | Alloy Nanocrystals: Kinetically Controlled Growth of Polyhedral Bimetallic Alloy Nanocrystals<br>Exclusively Bound by Highâ€Index Facets: Au–Pd Hexoctahedra (Small 5/2013). Small, 2013, 9, 646-646. | 10.0 | 1         |
| 47 | Surface Engineering of Palladium Nanocrystals: Decoupling the Activity of Different Surface Sites on<br>Nanocrystal Catalysts. Angewandte Chemie, 0, , .                                              | 2.0  | 0         |