
SÅ,awomir Milewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8433822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluconazole resistant Candida auris clinical isolates have increased levels of cell wall chitin and increased susceptibility to a glucosamine-6-phosphate synthase inhibitor. Cell Surface, 2022, 8, 100076.	1.5	11
2	Inhibitors of glucosamine-6-phosphate synthase as potential antimicrobials or antidiabetics – synthesis and properties. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 1928-1956.	2.5	6
3	Antifungal Effect of Penicillamine Due to the Selective Targeting of L-Homoserine O-Acetyltransferase. International Journal of Molecular Sciences, 2022, 23, 7763.	1.8	1
4	Quest for the Molecular Basis of Improved Selective Toxicity of All-Trans Isomers of Aromatic Heptaene Macrolide Antifungal Antibiotics. International Journal of Molecular Sciences, 2021, 22, 10108.	1.8	5
5	Molecular Umbrella as a Nanocarrier for Antifungals. Molecules, 2021, 26, 5475.	1.7	3
6	Conjugates of Ciprofloxacin and Levofloxacin with Cell-Penetrating Peptide Exhibit Antifungal Activity and Mammalian Cytotoxicity. International Journal of Molecular Sciences, 2020, 21, 4696.	1.8	31
7	The Substantial Improvement of Amphotericin B Selective Toxicity Upon Modification of Mycosamine with Bulky Substituents. Medicinal Chemistry, 2020, 16, 128-139.	0.7	6
8	Voriconazole-Based Salts Are Active against Multidrug-Resistant Human Pathogenic Yeasts. Molecules, 2019, 24, 3635.	1.7	0
9	Antibiotic-Based Conjugates Containing Antimicrobial HLopt2 Peptide: Design, Synthesis, Antimicrobial and Cytotoxic Activities. ACS Chemical Biology, 2019, 14, 2233-2242.	1.6	7
10	Emerging Anticancer Activity of Candidal Glucoseamine-6-Phosphate Synthase Inhibitors upon Nanoparticle-Mediated Delivery. Langmuir, 2019, 35, 5281-5293.	1.6	6
11	Peptide conjugates of lactoferricin analogues and antimicrobials—Design, chemical synthesis, and evaluation of antimicrobial activity and mammalian cytotoxicity. Peptides, 2019, 117, 170079.	1.2	17
12	Crystal structures of aminotransferases Aro8 and Aro9 from Candida albicans and structural insights into their properties. Journal of Structural Biology, 2019, 205, 26-33.	1.3	5
13	Anthra[1,2-d][1,2,3]triazine-4,7,12(3H)-triones as a New Class of Antistaphylococcal Agents: Synthesis and Biological Evaluation. Molecules, 2019, 24, 4581.	1.7	11
14	Glucosamine-6-phosphate synthase, a novel target for antifungal agents. Molecular modelling studies in drug design Acta Biochimica Polonica, 2019, 52, 647-653.	0.3	45
15	Molecular Umbrellas Modulate the Selective Toxicity of Polyene Macrolide Antifungals. Bioconjugate Chemistry, 2018, 29, 1454-1465.	1.8	12
16	Antifungal dipeptides incorporating an inhibitor of homoserine dehydrogenase. Journal of Peptide Science, 2018, 24, e3060.	0.8	9
17	Versatility of putative aromatic aminotransferases from Candida albicans. Fungal Genetics and Biology, 2018, 110, 26-37.	0.9	12
18	Essential oils as potential anti-staphylococcal agents. Acta Veterinaria, 2018, 68, 95-107.	0.2	20

#	Article	IF	CITATIONS
19	The Antimicrobial Potential of Bacteria Isolated from Honey Samples Produced in the Apiaries Located in Pomeranian Voivodeship in Northern Poland. International Journal of Environmental Research and Public Health, 2018, 15, 2002.	1.2	39
20	Antimicrobial Activity of Chimera Peptides Composed of Human Neutrophil Peptide 1 (HNP-1) Truncated Analogues and Bovine Lactoferrampin. Bioconjugate Chemistry, 2018, 29, 3060-3071.	1.8	7
21	Investigation of the Antifungal Activity and Mode of Action of Thymus vulgaris, Citrus limonum, Pelargonium graveolens, Cinnamomum cassia, Ocimum basilicum, and Eugenia caryophyllus Essential Oils. Molecules, 2018, 23, 1116.	1.7	53
22	Modification of quaternary structure of Candida albicans GlcN-6-P synthase and its desensitization to inhibition by UDP-GlcNAc by site-directed mutagenesis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 1181-1189.	1.1	5
23	Antifungal Activity and Synergism with Azoles of Polish Propolis. Pathogens, 2018, 7, 56.	1.2	43
24	Light-Induced Transformation of the Aromatic Heptaene Antifungal Antibiotic Candicidin D into Its All-Trans Isomer. Journal of Natural Products, 2018, 81, 1540-1545.	1.5	13
25	Isolation of Bacteriocin-producing <i>Staphylococcus</i> spp. Strains from Human Skin Wounds, Soft Tissue Infections and Bovine Mastitis. Polish Journal of Microbiology, 2018, 67, 163-170.	0.6	3
26	Synthesis and antimicrobial activity of 6-sulfo-6-deoxy-D-glucosamine and its derivatives. Carbohydrate Research, 2017, 448, 79-87.	1.1	5
27	Spectroscopic and magnetic studies of highly dispersible superparamagnetic silica coated magnetite nanoparticles. Journal of Magnetism and Magnetic Materials, 2017, 433, 254-261.	1.0	33
28	Acetate-Induced Disassembly of Spherical Iron Oxide Nanoparticle Clusters into Monodispersed Core–Shell Structures upon Nanoemulsion Fusion. Langmuir, 2017, 33, 10351-10365.	1.6	16
29	Transport Deficiency Is the Molecular Basis of Candida albicans Resistance to Antifungal Oligopeptides. Frontiers in Microbiology, 2017, 8, 2154.	1.5	7
30	Molecular Targets for Anticandidal Chemotherapy. , 2017, , 429-469.		0
31	Two Small RNAs Conserved in Enterobacteriaceae Provide Intrinsic Resistance to Antibiotics Targeting the Cell Wall Biosynthesis Enzyme Glucosamine-6-Phosphate Synthase. Frontiers in Microbiology, 2016, 7, 908.	1.5	30
32	Preparation and characterization of porous scaffolds from chitosan-collagen-gelatin composite. Reactive and Functional Polymers, 2016, 103, 131-140.	2.0	49
33	Antimicrobial molecular nanocarrier–drug conjugates. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2215-2240.	1.7	33
34	Characterization of recombinant homocitrate synthase from Candida albicans. Protein Expression and Purification, 2016, 125, 7-18.	0.6	3
35	A novel <i>inÂvitro</i> assay for assessing efficacy and toxicity of antifungals using human leukaemic cells infected with <i>Candida albicans</i> . Journal of Applied Microbiology, 2015, 119, 177-187.	1.4	5
36	Chemosensitization of multidrug resistant Candida albicans by the oxathiolone fused chalcone derivatives. Frontiers in Microbiology, 2015, 6, 783.	1.5	15

#	Article	IF	CITATIONS
37	Essential Oils, Silver Nanoparticles and Propolis as Alternative Agents Against Fluconazole Resistant Candida albicans, Candida glabrata and Candida krusei Clinical Isolates. Indian Journal of Microbiology, 2015, 55, 175-183.	1.5	64
38	Heterogeneity of quaternary structure of glucosamine-6-phosphate deaminase from Giardia lamblia. Parasitology Research, 2015, 114, 175-184.	0.6	4
39	Mechanisms of azole resistance among clinical isolates of Candida glabrata in Poland. Journal of Medical Microbiology, 2015, 64, 610-619.	0.7	35
40	Isolation of the GFA1 gene encoding glucosamine-6-phosphate synthase of Sporothrix schenckii and its expression in Saccharomyces cerevisiae. Protein Expression and Purification, 2015, 110, 57-64.	0.6	5
41	Evaluation of possibilities in identification and susceptibility testing for Candida glabrata clinical isolates with the Integral System Yeast Plus (ISYP). Acta Microbiologica Et Immunologica Hungarica, 2014, 61, 161-172.	0.4	2
42	Phenotypic consequences of <i>LYS4</i> gene disruption in <i>Candida albicans</i> . Yeast, 2014, 31, 299-308.	0.8	6
43	Preparation and characterization of genipin cross-linked porous chitosan–collagen–gelatin scaffolds using chitosan–CO2 solution. Carbohydrate Polymers, 2014, 102, 901-911.	5.1	114
44	EFFICIENT PRODUCTION OFStaphylococcus simulansLYSOSTAPHIN IN A BENCHTOP BIOREACTOR BY RECOMBINANTEscherichia coli. Preparative Biochemistry and Biotechnology, 2014, 44, 370-381.	1.0	14
45	Chitosan-protein scaffolds loaded with lysostaphin as potential antistaphylococcal wound dressing materials. Journal of Applied Microbiology, 2014, 117, 634-642.	1.4	17
46	Novel Nystatin A1 derivatives exhibiting low host cell toxicity and antifungal activity in an in vitro model of oral candidosis. Medical Microbiology and Immunology, 2014, 203, 341-355.	2.6	16
47	Homoisocitrate dehydrogenase from <i>Candida albicans</i> : properties, inhibition, and targeting by an antifungal pro-drug. FEMS Yeast Research, 2013, 13, 143-155.	1.1	12
48	Engineering <i>Candida albicans</i> glucosamineâ€6â€phosphate synthase for efficient enzyme purification. Journal of Molecular Recognition, 2012, 25, 564-570.	1.1	5
49	Peptidoglycan hydrolases-potential weapons against Staphylococcus aureus. Applied Microbiology and Biotechnology, 2012, 96, 1157-1174.	1.7	107
50	Antifungal Activity of Homoaconitate and Homoisocitrate Analogs. Molecules, 2012, 17, 14022-14036.	1.7	9
51	Chemical reactivity and antimicrobial activity of <i>N</i> -substituted maleimides. Journal of Enzyme Inhibition and Medicinal Chemistry, 2012, 27, 117-124.	2.5	18
52	Novel dendrimeric lipopeptides with antifungal activity. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1388-1393.	1.0	40
53	Inactivation of Glucosamineâ€6â€Phosphate Synthase by <i>N</i> ³ â€Oxoacyl Derivatives of <scp>L</scp> â€2,3â€Diaminopropanoic Acid. ChemBioChem, 2012, 13, 85-96.	1.3	3
54	Biofilm Production and Presence of ica and bap Genes in Staphylococcus aureus Strains Isolated from Cows with Mastitis in the Eastern Poland. Polish Journal of Microbiology, 2012, 61, 65-69.	0.6	49

SÅ,awomir Milewski

#	Article	IF	CITATIONS
55	Antifungal action of the oxathioloneâ€fused chalcone derivative. Mycoses, 2011, 54, e407-14.	1.8	16
56	Long range molecular dynamics study of regulation of eukaryotic glucosamine-6-phosphate synthase activity by UDP-GlcNAc. Journal of Molecular Modeling, 2011, 17, 3103-3115.	0.8	6
57	Disruption of Homocitrate Synthase Genes in Candida albicans Affects Growth But Not Virulence. Mycopathologia, 2010, 170, 397-402.	1.3	13
58	Sporothrix schenckii: purification and partial biochemical characterization of glucosamine-6-phosphate synthase, a potential antifungal target. Medical Mycology, 2010, 48, 110-121.	0.3	11
59	Role for Chitin and Chitooligomers in the Capsular Architecture of <i>Cryptococcus neoformans</i> . Eukaryotic Cell, 2009, 8, 1543-1553.	3.4	54
60	Synthesis of N3-fumaramoyl-L-2,3-diaminopropanoic acid analogues, the irreversible inhibitors of glucosamine synthetase. International Journal of Peptide and Protein Research, 2009, 27, 449-453.	0.1	30
61	Synthesis of Some Quaternary N-(1,4-anhydro-5-deoxy-D, L-ribitol-5-yl)ammonium Salts. Journal of Carbohydrate Chemistry, 2009, 28, 222-233.	0.4	8
62	Enhanced Susceptibility to Antifungal Oligopeptides in Yeast Strains Overexpressing ABC Multidrug Efflux Pumps. Antimicrobial Agents and Chemotherapy, 2008, 52, 4057-4063.	1.4	20
63	Functional domains and interdomain communication in Candida albicans glucosamine-6-phosphate synthase. Biochemical Journal, 2007, 404, 121-130.	1.7	18
64	The Crystal and Solution Studies of Glucosamine-6-phosphate Synthase from Candida albicans. Journal of Molecular Biology, 2007, 372, 672-688.	2.0	34
65	Rational design of N-alkyl derivatives of 2-amino-2-deoxy-d-glucitol-6P as antifungal agents. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6602-6606.	1.0	9
66	Voriconazole and multidrug resistance in Candida albicans. Mycoses, 2007, 50, 109-115.	1.8	35
67	Structural analogues of reactive intermediates as inhibitors of glucosamine-6-phosphate synthase and phosphoglucose isomerase. Archives of Biochemistry and Biophysics, 2006, 450, 39-49.	1.4	15
68	Construction, purification, and functional characterization of His-tagged Candida albicans glucosamine-6-phosphate synthase expressed in Escherichia coli. Protein Expression and Purification, 2006, 46, 309-315.	0.6	23
69	Enzymes of UDP-GlcNAc biosynthesis in yeast. Yeast, 2006, 23, 1-14.	0.8	166
70	N-Alkyl derivatives of 2-amino-2-deoxy-d-glucose. Carbohydrate Research, 2005, 340, 1876-1884.	1.1	29
71	Crystallization and preliminary X-ray analysis of the isomerase domain of glucosamine-6-phosphate synthase fromCandida albicans. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 994-996.	0.7	2
72	Phosphorylation of glucosamine-6-phosphate synthase is important but not essential for germination and mycelial growth ofCandida albicans. FEMS Microbiology Letters, 2004, 235, 73-80.	0.7	17

SÅ, AWOMIR MILEWSKI

#	Article	IF	CITATIONS
73	Phosphorylation of glucosamine-6-phosphate synthase is important but not essential for germination and mycelial growth of Candida albicans. FEMS Microbiology Letters, 2004, 235, 73-80.	0.7	8
74	Hydrophobic derivatives of 2-amino-2-deoxy-d-glucitol-6-phosphate: A new type of d-Glucosamine-6-phosphate synthase inhibitors with antifungal action. Bioorganic and Medicinal Chemistry, 2003, 11, 1653-1662.	1.4	19
75	Structure-activity relationships for a series of peptidomimetic antimicrobial prodrugs containing glutamine analogues. Journal of Antimicrobial Chemotherapy, 2003, 51, 821-831.	1.3	22
76	Glucosamine-6-phosphate synthase—the multi-facets enzyme. BBA - Proteins and Proteomics, 2002, 1597, 173-192.	2.1	222
77	ABC transporters Cdr1p, Cdr2p and Cdr3p of a human pathogenCandida albicans are general phospholipid translocators. Yeast, 2002, 19, 303-318.	0.8	104
78	Facilitated diffusion of glucosamine-6-phosphate synthase inhibitors enhances their antifungal activity Acta Biochimica Polonica, 2002, 49, 77-86.	0.3	4
79	Mechanism of antifungal action of kanosamine. Medical Mycology, 2001, 39, 401-408.	0.3	32
80	Amide and ester derivatives of N3-(4-methoxyfumaroyl)-(S)-2,3-diaminopropanoic acid. Bioorganic and Medicinal Chemistry, 2001, 9, 931-938.	1.4	6
81	Unusual Susceptibility of a Multidrug-Resistant Yeast Strain to Peptidic Antifungals. Antimicrobial Agents and Chemotherapy, 2001, 45, 223-228.	1.4	17
82	A diffusible analogue of N 3-(4-methoxyfumaroyl)-l-2,3-diaminopropanoic acid with antifungal activity. Microbiology (United Kingdom), 2001, 147, 1955-1959.	0.7	5
83	Purification to Homogeneity of Candida albicans Glucosamine-6-phosphate Synthase Overexpressed in Escherichia coli. Protein Expression and Purification, 2000, 19, 343-349.	0.6	26
84	Oligomeric Structure and Regulation of Candida albicans Glucosamine-6-phosphate Synthase. Journal of Biological Chemistry, 1999, 274, 4000-4008.	1.6	53
85	Cloning and sequence analysis of Histoplasma capsulatum glucosamine-6-phosphate synthase gene fragment. Mycopathologia, 1998, 142, 67-70.	1.3	3
86	Antibacterial action of dipeptides containing an inhibitor of glucosamine-6-phosphate isomerase. Microbiology (United Kingdom), 1998, 144, 1349-1358.	0.7	15
87	Investigation of Mechanism of Nitrogen Transfer in Glucosamine 6-Phosphate Synthase with the Use of Transition State Analogs. Bioorganic Chemistry, 1997, 25, 283-296.	2.0	8
88	Isolation and characterization of the GFA1 gene encoding the glutamine:fructose-6-phosphate amidotransferase of Candida albicans. Journal of Bacteriology, 1996, 178, 2320-2327.	1.0	42
89	Amide and Ester Derivatives of N ³ <i>-Trans-</i> Epoxysuccinoyl-L-2,3-Diaminopropanoic Acid: Inhibitors of Glucosamine-6-Phosphate Synthase. Journal of Enzyme Inhibition and Medicinal Chemistry, 1995, 9, 123-133.	0.5	9
90	Specific inhibition of acid proteinase secretion in <i>Candida albicans</i> by Lys-Nva-FMDP. Medical Mycology, 1994, 32, 1-11.	0.3	11

#	Article	IF	CITATIONS
91	Chemical modification studies of the active site of glucosamine-6-phosphate synthase from baker's yeast. BBA - Proteins and Proteomics, 1993, 1161, 279-284.	2.1	8
92	Chemical modification studies of the active centre of Candida albicans chitinase and its inhibition by allosamidin. Journal of General Microbiology, 1992, 138, 2545-2550.	2.3	34
93	The Influence of Serum Proteins on Biological Activity of Anticandidal Peptides Containing N ³ -(4-methoxyfumaroyl)-L-2,3-diaminopropanoic Acid. Journal of Chemotherapy, 1992, 4, 88-94.	0.7	6
94	N3-haloacetyl derivatives of l-2,3-diaminopropanoic acid: Novel inactivators of glucosamine-6-phosphate synthase. Biochimica Et Biophysica Acta - General Subjects, 1992, 1115, 225-229.	1.1	13
95	Mechanism of action of anticandidal dipeptides containing inhibitors of glucosamine-6-phosphate synthase. Antimicrobial Agents and Chemotherapy, 1991, 35, 36-43.	1.4	35
96	New N-alkyl derivatives of amphotericin B. Synthesis and biological properties Journal of Antibiotics, 1991, 44, 979-984.	1.0	20
97	Synergistic action of nikkomycin X/Z with azole antifungals on Candida albicans. Journal of General Microbiology, 1991, 137, 2155-2161.	2.3	35
98	Anticandidal properties of N3-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid oligopeptides. Journal of Medicinal Chemistry, 1990, 33, 132-135.	2.9	38
99	Antimicrobial properties of N3-(iodoacetyl)-L-2,3-diaminopropanoic acid-peptide conjugates. Journal of Medicinal Chemistry, 1990, 33, 2755-2759.	2.9	14
100	Synthesis and biological properties of N3-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid dipeptides. A novel group of antimicrobial agents. Journal of Medicinal Chemistry, 1987, 30, 1715-1719.	2.9	35
101	Antibiotic tetaine ? a selective inhibitor of chitin and mannoprotein biosynthesis in Candida albicans. Archives of Microbiology, 1986, 145, 234-240.	1.0	55
102	Synthetic derivatives of acid inactivate glucosamine synthetase from Candida albicans. BBA - Proteins and Proteomics, 1985, 828, 247-254.	2.1	27
103	Inhibition of glucosamine-6-phosphate synthetase from bacteria by anticapsin Journal of Antibiotics, 1984, 37, 652-658.	1.0	15