M Rita I Young

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/843370/publications.pdf

Version: 2024-02-01

36 papers 913 citations

361045 20 h-index 30 g-index

36 all docs 36 docs citations

36 times ranked 1484 citing authors

#	Article	IF	CITATIONS
1	Use of \hat{l}_{\pm} ,25-Dihydroxyvitamin D3 treatment to stimulate immune infiltration into head and neck squamous cell carcinoma. Human Immunology, 2010, 71, 659-665.	1.2	72
2	Posttraumatic Stress Disorder: An Immunological Disorder?. Frontiers in Psychiatry, 2017, 8, 222.	1.3	58
3	Tumor Secretion of VEGF Induces Endothelial Cells to Suppress T cell Functions Through the Production of PGE2. Journal of Immunotherapy, 2010, 33, 126-135.	1.2	56
4	Secretion of vascular endothelial growth factor by oral squamous cell carcinoma cells skews endothelial cells to suppress T-cell functions. Human Immunology, 2009, 70, 375-382.	1.2	51
5	Characterization of the evolution of immune phenotype during the development and progression of squamous cell carcinoma of the head and neck. Cancer Immunology, Immunotherapy, 2012, 61, 927-939.	2.0	50
6	An Inflammatory Cytokine Milieu is Prominent in Premalignant Oral Lesions, but Subsides when Lesions Progress to Squamous Cell Carcinoma. Journal of Clinical & Cellular Immunology, 2014, 05, .	1.5	49
7	Effect of the Premalignant and Tumor Microenvironment on Immune Cell Cytokine Production in Head and Neck Cancer. Cancers, 2014, 6, 756-770.	1.7	48
8	PTSD, a Disorder with an Immunological Component. Frontiers in Immunology, 2016, 7, 219.	2.2	46
9	Tumors induce the formation of suppressor endothelial cells in vivo. Cancer Immunology, Immunotherapy, 2010, 59, 267-277.	2.0	45
10	Oral premalignant lesions induce immune reactivity to both premalignant oral lesions and head and neck squamous cell carcinoma. Cancer Immunology, Immunotherapy, 2007, 56, 1077-1086.	2.0	37
11	An exploratory approach demonstrating immune skewing and a loss of coordination among cytokines in plasma and saliva of Veterans with combat-related PTSD. Human Immunology, 2016, 77, 652-657.	1.2	37
12	Immunological effects of nivolumab immunotherapy in patients with oral cavity squamous cell carcinoma. BMC Cancer, 2020, 20, 229.	1.1	30
13	Neoadjuvant presurgical PD-1 inhibition in oral cavity squamous cell carcinoma. Cell Reports Medicine, 2021, 2, 100426.	3.3	28
14	Immunological modulation by $1\hat{l}_{\pm}$,25-dihydroxyvitamin D3 in patients with squamous cell carcinoma of the head and neck. Cytokine, 2012, 58, 448-454.	1.4	27
15	Increased Levels of Immune Inhibitory Cd34+Progenitor Cells in the Peripheral Blood of Patients with Node Positive Headc and Neck Squamous Cell Carcinomas and The Ability of These CD34+Cells to Differentiate Into Immune Stimulatory Dendritic Cells. Otolaryngology - Head and Neck Surgery, 2001, 125, 205-212.	1.1	25
16	Th17 Cells in Protection from Tumor or Promotion of Tumor Progression. Journal of Clinical & Cellular Immunology, 2016, 7, 431.	1.5	25
17	Treatment to sustain a Th17â€type phenotype to prevent skewing toward Treg and to limit premalignant lesion progression to cancer. International Journal of Cancer, 2016, 138, 2487-2498.	2.3	25
18	Use of Carcinogen-induced Premalignant Oral Lesions in a Dendritic Cell-based Vaccine to Stimulate Immune Reactivity Against Both Premalignant Oral Lesions and Oral Cancer. Journal of Immunotherapy, 2008, 31, 148-156.	1.2	24

#	Article	IF	CITATIONS
19	Redirecting the focus of cancer immunotherapy to premalignant conditions. Cancer Letters, 2017, 391, 83-88.	3.2	24
20	Tumor skewing of CD34+ cell differentiation from a dendritic cell pathway into endothelial cells. Cancer Immunology, Immunotherapy, 2006, 55, 558-568.	2.0	21
21	Administration of a vaccine composed of dendritic cells pulsed with premalignant oral lesion lysate to mice bearing carcinogen-induced premalignant oral lesions stimulates a protective immune response. International Immunopharmacology, 2012, 13, 322-330.	1.7	19
22	Transient immunological and clinical effectiveness of treating mice bearing premalignant oral lesions with PDâ€1 antibodies. International Journal of Cancer, 2017, 140, 1609-1619.	2.3	16
23	Role of IL-23 signaling in the progression of premalignant oral lesions to cancer. PLoS ONE, 2018, 13, e0196034.	1.1	16
24	Cytokine and Adipokine Levels in Patients with Premalignant Oral Lesions or in Patients with Oral Cancer Who Did or Did Not Receive $1\hat{l}\pm,25$ -Dihydroxyvitamin D3 Treatment upon Cancer Diagnosis. Cancers, 2015, 7, 1109-1124.	1.7	15
25	Tumor-derived prostaglandin E2 and transforming growth factor-? stimulate endothelial cell motility through inhibition of protein phosphatase-2A and involvement of PTEN and phosphatidy linositide 3-kinase. Angiogenesis, 2004, 7, 123-131.	3.7	12
26	Premalignant Oral Lesion Cells Elicit Increased Cytokine Production and Activation of T-cells. Anticancer Research, 2016, 36, 3261-70.	0.5	12
27	Influence of vitamin D on cancer risk and treatment: Why the variability?. Trends in Cancer Research, 2018, 13, 43-53.	1.6	11
28	Indomethacin Treatment of Mice with Premalignant Oral Lesions Sustains Cytokine Production and Slows Progression to Cancer. Frontiers in Immunology, 2016, 7, 379.	2,2	10
29	Local Immune Responsiveness of Mice Bearing Premalignant Oral Lesions to PD-1 Antibody Treatment. Cancers, 2017, 9, 62.	1.7	9
30	Skewing of immune cell cytokine production by mediators from adipocytes and endothelial cells. Adipocyte, 2014, 3, 126-131.	1.3	5
31	Immune signatures associated with response to neoadjuvant PD-1 blockade in oral cavity cancer Journal of Clinical Oncology, 2019, 37, 6055-6055.	0.8	5
32	Reduced Expression of Immune Mediators by T-Cell Subpopulations of Combat-Exposed Veterans With Post-Traumatic Stress Disorder. Frontiers in Psychiatry, 2019, 10, 693.	1.3	2
33	Myeloidâ€derived suppressor cells (MDSCs) and tumorâ€associated macrophages (TAMs) produce CCL22 which selectively recruits regulatory Tâ€cells (Tregs) to the tumor microenvironment. FASEB Journal, 2008, 22, 1078.9.	0.2	2
34	Phosphatase regulation of cellular motility in the tumor microenvironment. FASEB Journal, 2008, 22, 1029.9.	0.2	1
35	Lewis Lung Carcinoma (LLC) alters the phenotype of murine lung mast cells resulting in a phenotype consistent with myeloidâ€derived suppressor cells (MDSCs). FASEB Journal, 2008, 22, 1078.28.	0.2	0
36	Role of Endothelial Cells in a Novel Mechanism of Tumorâ€Induced Immune Suppression. FASEB Journal, 2008, 22, 1078.7.	0.2	0

3