Yousung Jung

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8433532/yousung-jung-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 202
 17,932
 63
 132

 papers
 citations
 h-index
 g-index

 218
 20,789
 9.8
 6.99

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
202	An invertible crystallographic representation for general inverse design of inorganic crystals with targeted properties. <i>Matter</i> , 2022 , 5, 314-335	12.7	4
201	Engineering vacancy and hydrophobicity of two-dimensional TaTe for efficient and stable electrocatalytic N reduction <i>Innovation(China)</i> , 2022 , 3, 100190	17.8	5
200	Recent progress in computational discovery of Heusler alloys. <i>Bulletin of the Korean Chemical Society</i> , 2022 , 43, 484-491	1.2	O
199	Single atom and defect engineering of CuO for efficient electrochemical reduction of CO 2 to C 2 H 4. <i>SmartMat</i> , 2022 , 3, 194-205	22.8	1
198	Automated exploitation of the big configuration space of large adsorbates on transition metals reveals chemistry feasibility <i>Nature Communications</i> , 2022 , 13, 2087	17.4	1
197	Autobifunctional Mechanism of Jagged Pt Nanowires for Hydrogen Evolution Kinetics via End-to-End Simulation. <i>Journal of the American Chemical Society</i> , 2021 , 143, 5355-5363	16.4	7
196	Enhanced electrochemical CO2 reduction to ethylene over CuO by synergistically tuning oxygen vacancies and metal doping. <i>Cell Reports Physical Science</i> , 2021 , 2, 100356	6.1	15
195	High Facets on Nanowrinkled Cu via Chemical Vapor Deposition Graphene Growth for Efficient CO2 Reduction into Ethanol. <i>ACS Catalysis</i> , 2021 , 11, 5658-5665	13.1	13
194	Pd Pb Nanosponges for Selective Conversion of Furfural to Furfuryl Alcohol under Mild Condition <i>Small Methods</i> , 2021 , 5, e2100400	12.8	1
193	Understanding potential-dependent competition between electrocatalytic dinitrogen and proton reduction reactions. <i>Nature Communications</i> , 2021 , 12, 4353	17.4	22
192	Electrochemical ammonia synthesis: Mechanistic understanding and catalyst design. <i>CheM</i> , 2021 , 7, 17	08 <u>r</u> 4.Z5	470
191	Shifting the scaling relations of single-atom catalysts for facile methane activation by tuning the coordination number. <i>Chemical Science</i> , 2021 , 12, 3551-3557	9.4	3
190	Predicting potentially hazardous chemical reactions using an explainable neural network. <i>Chemical Science</i> , 2021 , 12, 11028-11037	9.4	O
189	Theoretical Study on the Degree of CO Activation in CO-Coordinated Ni(0) Complexes. <i>ACS Omega</i> , 2021 , 6, 7646-7654	3.9	2
188	Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. <i>Journal of Chemical Physics</i> , 2021 , 155, 084801	3.9	115
187	Deep Retrosynthetic Reaction Prediction using Local Reactivity and Global Attention. <i>Jacs Au</i> , 2021 , 1, 1612-1620		6
186	Vertical-crystalline Fe-doped ENi oxyhydroxides for highly active and stable oxygen evolution reaction. <i>Matter</i> , 2021 ,	12.7	4

(2020-2021)

185	Controlling hot electron flux and catalytic selectivity with nanoscale metal-oxide interfaces. <i>Nature Communications</i> , 2021 , 12, 40	17.4	7
184	Surface overgrowth on gold nanoparticles modulating high-energy facets for efficient electrochemical CO reduction. <i>Nanoscale</i> , 2021 , 13, 14346-14353	7.7	O
183	Highly stable two-dimensional bismuth metal-organic frameworks for efficient electrochemical reduction of CO2. <i>Applied Catalysis B: Environmental</i> , 2020 , 277, 119241	21.8	53
182	Progress in Computational and Machine-Learning Methods for Heterogeneous Small-Molecule Activation. <i>Advanced Materials</i> , 2020 , 32, e1907865	24	23
181	Interaction Mediator Assisted Synthesis of Mesoporous Molybdenum Carbide: Mo-Valence State Adjustment for Optimizing Hydrogen Evolution. <i>ACS Nano</i> , 2020 , 14, 4988-4999	16.7	50
180	Uncertainty-Quantified Hybrid Machine Learning/Density Functional Theory High Throughput Screening Method for Crystals. <i>Journal of Chemical Information and Modeling</i> , 2020 , 60, 1996-2003	6.1	12
179	Practical Deep-Learning Representation for Fast Heterogeneous Catalyst Screening. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 3185-3191	6.4	29
178	Selective electrocatalysis imparted by metalinsulator transition for durability enhancement of automotive fuel cells. <i>Nature Catalysis</i> , 2020 , 3, 639-648	36.5	32
177	Machine-enabled inverse design of inorganic solid materials: promises and challenges. <i>Chemical Science</i> , 2020 , 11, 4871-4881	9.4	42
176	Tunable sieving of small gas molecules using horizontal graphene oxide membrane. <i>Journal of Membrane Science</i> , 2020 , 610, 118178	9.6	9
175	Towards stable Na-rich layered transition metal oxides for high energy density sodium-ion batteries. <i>Energy Storage Materials</i> , 2020 , 25, 62-69	19.4	17
174	Charge-transfer descriptor for the cycle performance of £i2MO3 cathodes: role of oxygen dimers. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 2663-2671	13	5
173	Aqueous lithium-ion batteries with niobium tungsten oxide anodes for superior volumetric and rate capability. <i>Energy Storage Materials</i> , 2020 , 27, 506-513	19.4	20
172	Activation of Ni Particles into Single Nill Atoms for Efficient Electrochemical Reduction of CO2. <i>Advanced Energy Materials</i> , 2020 , 10, 1903068	21.8	111
171	Reduced graphene oxides with engineered defects enable efficient electrochemical reduction of dinitrogen to ammonia in wide pH range. <i>Nano Energy</i> , 2020 , 68, 104323	17.1	43
170	Surface-engineered oxidized two-dimensional Sb for efficient visible light-driven N2 fixation. <i>Nano Energy</i> , 2020 , 78, 105368	17.1	21
169	Longitudinal unzipping of 2D transition metal dichalcogenides. <i>Nature Communications</i> , 2020 , 11, 5032	17.4	7
168	Highly durable fuel cell catalysts using crosslinkable block copolymer-based carbon supports with ultralow Pt loadings. <i>Energy and Environmental Science</i> , 2020 , 13, 4921-4929	35.4	28

167	Generative Adversarial Networks for Crystal Structure Prediction. ACS Central Science, 2020, 6, 1412-14	120 6.8	35
166	Single yttrium sites on carbon-coated TiO for efficient electrocatalytic N reduction. <i>Chemical Communications</i> , 2020 , 56, 10910-10913	5.8	15
165	Structure-Based Synthesizability Prediction of Crystals Using Partially Supervised Learning. <i>Journal of the American Chemical Society</i> , 2020 , 142, 18836-18843	16.4	19
164	Stabilization of Cu+ by tuning a CuOtteO2 interface for selective electrochemical CO2 reduction to ethylene. <i>Green Chemistry</i> , 2020 , 22, 6540-6546	10	34
163	Inverse Design of Solid-State Materials via a Continuous Representation. <i>Matter</i> , 2019 , 1, 1370-1384	12.7	99
162	Efficient visible-light driven N fixation over two-dimensional Sb/TiO composites. <i>Chemical Communications</i> , 2019 , 55, 7171-7174	5.8	31
161	Enhanced rate capability due to highly active Ta2O5 catalysts for lithium sulfur batteries. <i>Journal of Power Sources</i> , 2019 , 435, 226707	8.9	15
160	Mixed Transition Metal Oxide with Vacancy-Induced Lattice Distortion for Enhanced Catalytic Activity of Oxygen Evolution Reaction. <i>ACS Catalysis</i> , 2019 , 9, 7099-7108	13.1	52
159	Oxygen vacancy enables electrochemical N2 fixation over WO3 with tailored structure. <i>Nano Energy</i> , 2019 , 62, 869-875	17.1	94
158	Machine learning for renewable energy materials. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 17096-171	1743	114
158 157	Machine learning for renewable energy materials. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 17096-171 Ambient Stabilization of Few Layer Phosphorene via Noncovalent Functionalization with Surfactants: Systematic 2D NMR Characterization in Aqueous Dispersion. <i>Chemistry of Materials</i> , 2019 , 31, 2786-2794	17 ₁₃	114 30
	Ambient Stabilization of Few Layer Phosphorene via Noncovalent Functionalization with Surfactants: Systematic 2D NMR Characterization in Aqueous Dispersion. <i>Chemistry of Materials</i> ,		·
157	Ambient Stabilization of Few Layer Phosphorene via Noncovalent Functionalization with Surfactants: Systematic 2D NMR Characterization in Aqueous Dispersion. <i>Chemistry of Materials</i> , 2019 , 31, 2786-2794 High-yield production of few-layer boron nanosheets for efficient electrocatalytic N reduction.	9.6	30
157 156	Ambient Stabilization of Few Layer Phosphorene via Noncovalent Functionalization with Surfactants: Systematic 2D NMR Characterization in Aqueous Dispersion. <i>Chemistry of Materials</i> , 2019 , 31, 2786-2794 High-yield production of few-layer boron nanosheets for efficient electrocatalytic N reduction. <i>Chemical Communications</i> , 2019 , 55, 4246-4249 Low-Dimensional Confined Ice Has the Electronic Signature of Liquid Water. <i>Journal of Physical</i>	9.6 5.8	30 71
157 156 155	Ambient Stabilization of Few Layer Phosphorene via Noncovalent Functionalization with Surfactants: Systematic 2D NMR Characterization in Aqueous Dispersion. <i>Chemistry of Materials</i> , 2019 , 31, 2786-2794 High-yield production of few-layer boron nanosheets for efficient electrocatalytic N reduction. <i>Chemical Communications</i> , 2019 , 55, 4246-4249 Low-Dimensional Confined Ice Has the Electronic Signature of Liquid Water. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 2008-2016 Intrinsic Relation between Hot Electron Flux and Catalytic Selectivity during Methanol Oxidation.	9.6 5.8 6.4	30 71 5
157 156 155	Ambient Stabilization of Few Layer Phosphorene via Noncovalent Functionalization with Surfactants: Systematic 2D NMR Characterization in Aqueous Dispersion. <i>Chemistry of Materials</i> , 2019 , 31, 2786-2794 High-yield production of few-layer boron nanosheets for efficient electrocatalytic N reduction. <i>Chemical Communications</i> , 2019 , 55, 4246-4249 Low-Dimensional Confined Ice Has the Electronic Signature of Liquid Water. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 2008-2016 Intrinsic Relation between Hot Electron Flux and Catalytic Selectivity during Methanol Oxidation. <i>ACS Catalysis</i> , 2019 , 9, 8424-8432 Lattice Convolutional Neural Network Modeling of Adsorbate Coverage Effects. <i>Journal of Physical</i>	9.6 5.8 6.4	30 71 5
157 156 155 154 153	Ambient Stabilization of Few Layer Phosphorene via Noncovalent Functionalization with Surfactants: Systematic 2D NMR Characterization in Aqueous Dispersion. <i>Chemistry of Materials</i> , 2019 , 31, 2786-2794 High-yield production of few-layer boron nanosheets for efficient electrocatalytic N reduction. <i>Chemical Communications</i> , 2019 , 55, 4246-4249 Low-Dimensional Confined Ice Has the Electronic Signature of Liquid Water. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 2008-2016 Intrinsic Relation between Hot Electron Flux and Catalytic Selectivity during Methanol Oxidation. <i>ACS Catalysis</i> , 2019 , 9, 8424-8432 Lattice Convolutional Neural Network Modeling of Adsorbate Coverage Effects. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 18951-18959 Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction. <i>Applied</i>	9.6 5.8 6.4 13.1 3.8	 30 71 5 6 16

149	Nitrogen Fixation by Ru Single-Atom Electrocatalytic Reduction. <i>CheM</i> , 2019 , 5, 204-214	16.2	501
148	Understanding the Effects of Au Morphology on CO2 Electrocatalysis. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 4274-4280	3.8	29
147	Tungsten Carbide as a Highly Efficient Catalyst for Polysulfide Fragmentations in Liß Batteries. Journal of Physical Chemistry C, 2018 , 122, 7664-7669	3.8	31
146	pH-Dependent Conformations for Hyperbranched Poly(ethylenimine) from All-Atom Molecular Dynamics. <i>Macromolecules</i> , 2018 , 51, 2187-2194	5.5	11
145	Highly Efficient Catalytic Cyclic Carbonate Formation by Pyridyl Salicylimines. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 9478-9484	9.5	64
144	Active learning with non- input features toward efficient CO reduction catalysts. <i>Chemical Science</i> , 2018 , 9, 5152-5159	9.4	42
143	Diamine-Functionalization of a Metal-Organic Framework Adsorbent for Superb Carbon Dioxide Adsorption and Desorption Properties. <i>ChemSusChem</i> , 2018 , 11, 1694-1707	8.3	30
142	A catalytic role of surface silanol groups in CO capture on the amine-anchored silica support. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 12149-12156	3.6	9
141	Nanostructuring one-dimensional and amorphous lithium peroxide for high round-trip efficiency in lithium-oxygen batteries. <i>Nature Communications</i> , 2018 , 9, 680	17.4	50
140	Polyselenide Anchoring Using Transition-Metal Disulfides for Enhanced Lithium-Selenium Batteries. <i>Inorganic Chemistry</i> , 2018 , 57, 2149-2156	5.1	17
139	The Role of Adsorbed CN and Cl on an Au Electrode for Electrochemical CO2 Reduction. <i>ACS Catalysis</i> , 2018 , 8, 1178-1185	13.1	67
138	Infrared spectroscopy and density functional calculations on titanium-dinitrogen complexes. <i>Chemical Physics Letters</i> , 2018 , 698, 163-170	2.5	2
137	Origin of unusual spinel-to-layered phase transformation by crystal water. <i>Chemical Science</i> , 2018 , 9, 433-438	9.4	23
136	A local environment descriptor for machine-learned density functional theory at the generalized gradient approximation level. <i>Journal of Chemical Physics</i> , 2018 , 148, 241742	3.9	9
135	Tuning the Pd-catalyzed electroreduction of CO2 to CO with reduced overpotential. <i>Catalysis Science and Technology</i> , 2018 , 8, 3894-3900	5.5	20
134	Computational exploration of borophane-supported single transition metal atoms as potential oxygen reduction and evolution electrocatalysts. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 21095-2	213104	39
133	Revealing the Role of Oxygen Debris and Functional Groups on the Water Flux and Molecular Separation of Graphene Oxide Membrane: A Combined Experimental and Theoretical Study. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 17507-17517	3.8	22
132	Adsorbate-driven reactive interfacial Pt-NiO nanostructure formation on the PtNi(111) alloy surface. <i>Science Advances</i> , 2018 , 4, eaat3151	14.3	53

131	Ultralow Overpotential of Hydrogen Evolution Reaction using Fe-Doped Defective Graphene: A Density Functional Study. <i>ChemCatChem</i> , 2018 , 10, 4450-4455	5.2	10
130	Activating Transition Metal Dichalcogenides by Substitutional Nitrogen-Doping for Potential ORR Electrocatalysts. <i>ChemElectroChem</i> , 2018 , 5, 4029-4035	4.3	17
129	Boosting hot electron flux and catalytic activity at metal-oxide interfaces of PtCo bimetallic nanoparticles. <i>Nature Communications</i> , 2018 , 9, 2235	17.4	56
128	Doping palladium with tellurium for the highly selective electrocatalytic reduction of aqueous CO to CO. <i>Chemical Science</i> , 2018 , 9, 483-487	9.4	73
127	Carbon-supported Ni nanoparticles for efficient CO electroreduction. <i>Chemical Science</i> , 2018 , 9, 8775-8	7 8 .Q	116
126	Studies on Catalytic Activity of Hydrogen Peroxide Generation according to Au Shell Thickness of Pd/Au Nanocubes. <i>ACS Applied Materials & Description</i> (1988) 10, 38109-38116	9.5	22
125	Suppression of Hydrogen Evolution Reaction in Electrochemical N2 Reduction Using Single-Atom Catalysts: A Computational Guideline. <i>ACS Catalysis</i> , 2018 , 8, 7517-7525	13.1	333
124	Edge-Functionalized Graphene Nanoribbon Frameworks for the Capture and Separation of Greenhouse Gases. <i>Macromolecules</i> , 2017 , 50, 523-533	5.5	11
123	Heterogeneous Catalysis for LithiumBulfur Batteries: Enhanced Rate Performance by Promoting Polysulfide Fragmentations. <i>ACS Energy Letters</i> , 2017 , 2, 327-333	20.1	141
122	A Novel Fabrication of 3.6 nm High Graphene Nanochannels for Ultrafast Ion Transport. <i>Advanced Materials</i> , 2017 , 29, 1605854	24	15
121	EEWS 2016: Progress and Perspectives of Energy Science and Technology. <i>ACS Energy Letters</i> , 2017 , 2, 592-594	20.1	
120	Importance of Ligand Effects Breaking the Scaling Relation for CoreBhell Oxygen Reduction Catalysts. <i>ChemCatChem</i> , 2017 , 9, 3173-3179	5.2	21
119	Highly active and selective Au thin layer on Cu polycrystalline surface prepared by galvanic displacement for the electrochemical reduction of CO2 to CO. <i>Applied Catalysis B: Environmental</i> , 2017 , 213, 211-215	21.8	38
118	TiC- and TiN-Supported Single-Atom Catalysts for Dramatic Improvements in CO2 Electrochemical Reduction to CH4. <i>ACS Energy Letters</i> , 2017 , 2, 969-975	20.1	134
117	Artificial neural network for the configuration problem in solids. <i>Journal of Chemical Physics</i> , 2017 , 146, 064103	3.9	6
116	Stability, Molecular Sieving, and Ion Diffusion Selectivity of a Lamellar Membrane from Two-Dimensional Molybdenum Disulfide. <i>Nano Letters</i> , 2017 , 17, 2342-2348	11.5	103
115	Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites. <i>Nature Materials</i> , 2017 , 16, 526-531	27	135
114	Probing surface oxide formations on SiO2-supported platinum nanocatalysts under CO oxidation. <i>RSC Advances</i> , 2017 , 7, 45003-45009	3.7	18

(2016-2017)

113	One dimensional building blocks for molecular separation: laminated graphitic nanoribbons. <i>Nanoscale</i> , 2017 , 9, 19114-19123	7.7	19
112	Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts. <i>Nature Communications</i> , 2017 , 8, 1449	17.4	168
111	Multilayer Two-Dimensional Water Structure Confined in MoS2. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 16021-16028	3.8	23
110	Single-atom catalysts for CO electroreduction with significant activity and selectivity improvements. <i>Chemical Science</i> , 2017 , 8, 1090-1096	9.4	319
109	Tuning the Phase Stability of Sodium Metal Pyrophosphates for Synthesis of High Voltage Cathode Materials. <i>Chemistry of Materials</i> , 2016 , 28, 6724-6730	9.6	12
108	Bifunctional Interface of Au and Cu for Improved CO2 Electroreduction. <i>ACS Applied Materials</i> & amp; Interfaces, 2016 , 8, 23022-7	9.5	67
107	Alcohol Dimer is Requisite to Form an Alkyl Oxonium Ion in the Proton Transfer of a Strong (Photo)Acid to Alcohol. <i>Chemistry - A European Journal</i> , 2016 , 22, 4340-4	4.8	12
106	Defect-Controlled Formation of Triclinic Na2 CoP2 O7 for 4 V Sodium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 6662-6	16.4	55
105	Adsorption of Carbon Dioxide on Unsaturated Metal Sites in M2 (dobpdc) Frameworks with Exceptional Structural Stability and Relation between Lewis Acidity and Adsorption Enthalpy. <i>Chemistry - A European Journal</i> , 2016 , 22, 7444-51	4.8	25
104	Ti(N5)4 as a Potential Nitrogen-Rich Stable High-Energy Density Material. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 4249-55	2.8	20
103	The critical size of hydrogen-bonded alcohol clusters as effective Brlisted bases in solutions. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 24880-9	3.6	9
102	Optimal Activation of Porous Carbon for High Performance CO2 Capture. <i>ChemNanoMat</i> , 2016 , 2, 528-	53 ₃ 3 ₅	10
101	Porous cationic polymers: the impact of counteranions and charges on CO2 capture and conversion. <i>Chemical Communications</i> , 2016 , 52, 934-7	5.8	127
100	On the mechanism of high product selectivity for HCOOH using Pb in CO2 electroreduction. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 9652-7	3.6	47
99	Alcohol Dimer is Requisite to Form an Alkyl Oxonium Ion in the Proton Transfer of a Strong (Photo)Acid to Alcohol. <i>Chemistry - A European Journal</i> , 2016 , 22, 4301-4301	4.8	1
98	Computational Analysis of Pressure-Dependent Optimal Pore Size for CO2 Capture with Graphitic Surfaces. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 3978-3985	3.8	10
97	On the mechanism of electrochemical ammonia synthesis on the Ru catalyst. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 9161-6	3.6	111
96	Defect-Controlled Formation of Triclinic Na2CoP2O7 for 4 V Sodium-Ion Batteries. <i>Angewandte Chemie</i> , 2016 , 128, 6774-6778	3.6	5

95	Unexpected solution phase formation of hollow PtSn alloy nanoparticles from Sn deposition on Pt dendritic structures. <i>CrystEngComm</i> , 2016 , 18, 6019-6023	3.3	4
94	A soft damping function for dispersion corrections with less overfitting. <i>Journal of Chemical Physics</i> , 2016 , 145, 174104	3.9	3
93	A potential role of a substrate as a base for the deprotonation pathway in Rh-catalysed C-H amination of heteroarenes: DFT insights. <i>Dalton Transactions</i> , 2016 , 45, 7980-5	4.3	12
92	Observation of the wrapping mechanism in amine carbon dioxide molecular interactions on heterogeneous sorbents. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 14177-81	3.6	34
91	A perspective on the density matrix purification for linear scaling electronic structure calculations. <i>International Journal of Quantum Chemistry</i> , 2016 , 116, 563-568	2.1	5
90	Effects of boron oxidation state on electrocatalytic activity of carbons synthesized from CO2. Journal of Materials Chemistry A, 2015 , 3, 5843-5849	13	20
89	Active Sites of Au and Ag Nanoparticle Catalysts for CO2Electroreduction to CO. <i>ACS Catalysis</i> , 2015 , 5, 5089-5096	13.1	326
88	Critical Role of Crystal Water for a Layered Cathode Material in Sodium Ion Batteries. <i>Chemistry of Materials</i> , 2015 , 27, 3721-3725	9.6	142
87	Two-Dimensional Transition Metal Dichalcogenide Monolayers as Promising Sodium Ion Battery Anodes. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 26374-26380	3.8	210
86	Mechanistic Study on CI Bond Formation of a Nickel(I) Monocarbonyl Species with Alkyl Iodides: Experimental and Computational Investigations. <i>Organometallics</i> , 2015 , 34, 4305-4311	3.8	21
85	Selective Heterogeneous CO2 Electroreduction to Methanol. ACS Catalysis, 2015, 5, 965-971	13.1	137
84	Analytical double-hybrid density functional based on the polynomial series expansion of adiabatic connection: a quadratic approximation. <i>Journal of Chemical Theory and Computation</i> , 2015 , 11, 45-54	6.4	21
83	Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. <i>Molecular Physics</i> , 2015 , 113, 184-215	1.7	2068
82	A perspective on the electronic structure calculations for properties of battery electrode materials. <i>International Journal of Quantum Chemistry</i> , 2015 , 115, 1141-1146	2.1	4
81	Systematic Investigation of the Effect of Polymerization Routes on the Gas-Sorption Properties of Nanoporous Azobenzene Polymers. <i>Chemistry - A European Journal</i> , 2015 , 21, 15320-7	4.8	34
80	Skeletal octahedral nanoframe with Cartesian coordinates via geometrically precise nanoscale phase segregation in a Pt@Ni core-shell nanocrystal. <i>ACS Nano</i> , 2015 , 9, 2856-67	16.7	153
79	Modulating the magnetic behavior of Fe(II)-MOF-74 by the high electron affinity of the guest molecule. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 16977-82	3.6	18
78	The High Performance of Crystal Water Containing Manganese Birnessite Cathodes for Magnesium Batteries. <i>Nano Letters</i> , 2015 , 15, 4071-9	11.5	339

(2013-2015)

77	Exploring the possibilities of two-dimensional transition metal carbides as anode materials for sodium batteries. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 5000-5	3.6	118
76	Improved reversibility in lithium-oxygen battery: understanding elementary reactions and surface charge engineering of metal alloy catalyst. <i>Scientific Reports</i> , 2014 , 4, 4225	4.9	126
75	Carbon nanofluidics of rapid water transport for energy applications. <i>Chemical Society Reviews</i> , 2014 , 43, 565-76	58.5	146
74	Can Metal-Organic Framework Separate 1-Butene from Butene Isomers?. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 440-6	6.4	23
73	Hydrogen-bond-assisted controlled C-H functionalization via adaptive recognition of a purine directing group. <i>Journal of the American Chemical Society</i> , 2014 , 136, 1132-40	16.4	132
72	Directing the structural features of N(2)-phobic nanoporous covalent organic polymers for CO(2) capture and separation. <i>Chemistry - A European Journal</i> , 2014 , 20, 772-80	4.8	113
71	Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 599-604	11.5	120
70	Ordered supramolecular gels based on graphene oxide and tetracationic cyclophanes. <i>Advanced Materials</i> , 2014 , 26, 2725-9, 2617	24	24
69	Assessments of semilocal density functionals and corrections for carbon dioxide adsorption on metal-organic frameworks. <i>ChemPhysChem</i> , 2014 , 15, 3157-65	3.2	11
68	The binding nature of light hydrocarbons on Fe/MOF-74 for gas separation. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 19644-50	3.6	39
67	Flow-induced voltage generation over monolayer graphene in the presence of herringbone grooves. <i>Nanoscale Research Letters</i> , 2013 , 8, 487	5	19
66	Origin of Selective Guest-Induced Magnetism Transition in Fe/MOF-74. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 2530-2534	6.4	43
65	Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers. <i>Nature Communications</i> , 2013 , 4, 1357	17.4	395
64	Molecular dynamics simulations for thermal transport behavior of InAs nanotubes: A role of symmetry. <i>Computational Materials Science</i> , 2013 , 70, 8-12	3.2	2
63	Anomalous manganese activation of a pyrophosphate cathode in sodium ion batteries: a combined experimental and theoretical study. <i>Journal of the American Chemical Society</i> , 2013 , 135, 2787-92	16.4	131
62	Analytic Derivatives of Quartic-Scaling Doubly Hybrid XYGJ-OS Functional: Theory, Implementation, and Benchmark Comparison with M06-2X and MP2 Geometries for Nonbonded Compelexes. Journal of Chemical Theory and Computation, 2013, 9, 1971-1976	6.4	12
61	Highly Stable Nanoporous Sulfur-Bridged Covalent Organic Polymers for Carbon Dioxide Removal. <i>Advanced Functional Materials</i> , 2013 , 23, 2270-2276	15.6	126
60	Na2FeP2O7 as a Promising Iron-Based Pyrophosphate Cathode for Sodium Rechargeable Batteries: A Combined Experimental and Theoretical Study. <i>Advanced Functional Materials</i> , 2013 , 23, 1147-1155	15.6	250

59	Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites. <i>Nature Communications</i> , 2013 , 4, 2114	17.4	418
58	On the structure of Si(100) surface: importance of higher order correlations for buckled dimer. Journal of Chemical Physics, 2013, 138, 204709	3.9	5
57	Between scylla and charybdis: hydrophobic graphene-guided water diffusion on hydrophilic substrates. <i>Scientific Reports</i> , 2013 , 3, 2309	4.9	53
56	Flow-induced voltage generation in non-ionic liquids over monolayer graphene. <i>Applied Physics Letters</i> , 2013 , 102, 063116	3.4	42
55	Reply to Comment on D n the optimal symmetric purification scheme of the one-particle density matrix [] <i>Chemical Physics Letters</i> , 2012 , 527, 86-88	2.5	
54	Predictions of the sulfur and carbon kinetic isotope effects in the OH + OCS reaction. <i>Chemical Physics Letters</i> , 2012 , 531, 64-69	2.5	16
53	Ab Initio Study of the Sodium Intercalation and Intermediate Phases in Na0.44MnO2 for Sodium-Ion Battery. <i>Chemistry of Materials</i> , 2012 , 24, 1205-1211	9.6	195
52	Electrochemical and Thermal Properties of NASICON Structured Na3V2(PO4)3as a Sodium Rechargeable Battery Cathode: A Combined Experimental and Theoretical Study. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A1393-A1397	3.9	275
51	Correction and Addition to "Tuning Metal-Organic Frameworks with Open-Metal Sites and Its Origin for Enhancing CO2 Affinity by Metal Substitution". <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 1582	6.4	4
50	Stability of Positively Charged Solutes in Water: A Transition from Hydrophobic to Hydrophilic. Journal of Physical Chemistry Letters, 2012 , 3, 294-8	6.4	8
49	Combinatorial screening of highly active Pd binary catalysts for electrochemical oxygen reduction. <i>ACS Combinatorial Science</i> , 2012 , 14, 10-6	3.9	33
48	Rollover cyclometalation pathway in rhodium catalysis: dramatic NHC effects in the C-H bond functionalization. <i>Journal of the American Chemical Society</i> , 2012 , 134, 17778-88	16.4	139
47	Accurate Ab Initio-Based Force Field for Predictive CO2 Uptake Simulations in MOFs and ZIFs: Development and Applications for MTV-MOFs. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 20254-20261	3.8	36
46	On the absolute thermodynamics of water from computer simulations: a comparison of first-principles molecular dynamics, reactive and empirical force fields. <i>Journal of Chemical Physics</i> , 2012 , 137, 244507	3.9	51
45	High capacity carbon dioxide adsorption by inexpensive covalent organic polymers. <i>Journal of Materials Chemistry</i> , 2012 , 22, 8431		162
44	Site-specific transition metal occupation in multicomponent pyrophosphate for improved electrochemical and thermal properties in lithium battery cathodes: a combined experimental and theoretical study. <i>Journal of the American Chemical Society</i> , 2012 , 134, 11740-8	16.4	29
43	Tuning Metal-Organic Frameworks with Open-Metal Sites and Its Origin for Enhancing CO2 Affinity by Metal Substitution. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 826-9	6.4	103
42	Local intermolecular interactions for selective CO2 capture by zeolitic imidazole frameworks: energy decomposition analysis. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	8

41	Size effect of RhPt bimetallic nanoparticles in catalytic activity of CO oxidation: Role of surface segregation. <i>Catalysis Today</i> , 2012 , 181, 133-137	5.3	47
40	Local intermolecular interactions for selective CO2 capture by zeolitic imidazole frameworks: energy decomposition analysis 2012 , 277-288		
39	On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 17505-10	3.6	588
38	Microscopic structure and dynamics of air/water interface by computer simulationscomparison with sum-frequency generation experiments. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 5388-93	3.6	14
37	Amidoximes: promising candidates for CO2 capture. Energy and Environmental Science, 2011, 4, 4528	35.4	70
36	Accelerated Purification Using Generalized Nonpurifying Intermediate Functions for Large-Scale Self-Consistent Field Calculations. <i>Journal of Chemical Theory and Computation</i> , 2011 , 7, 3853-8	6.4	6
35	Intramolecular aromatic carbenoid insertion of biaryldiazoacetates for the regioselective synthesis of fluorenes. <i>Chemistry - an Asian Journal</i> , 2011 , 6, 2040-7	4.5	26
34	On the optimal symmetric purification scheme of the one-particle density matrix. <i>Chemical Physics Letters</i> , 2011 , 511, 159-160	2.5	4
33	Entropy and the driving force for the filling of carbon nanotubes with water. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 11794-8	11.5	251
32	Superexchange-like interaction of encaged molecular oxygen in nitrogen-doped water cages of clathrate hydrates. <i>Journal of the American Chemical Society</i> , 2011 , 133, 20399-404	16.4	15
31	Direct observation of atomic hydrogen generated from the water framework of clathrate hydrates. <i>Chemical Communications</i> , 2011 , 47, 674-6	5.8	21
30	New Insights into the Structure of the Vapor/Water Interface from Large-Scale First-Principles Simulations. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 105-13	6.4	114
29	A fast doubly hybrid density functional method close to chemical accuracy using a local opposite spin ansatz. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 19896-900	11.5	124
28	Protruding interfacial OH groups and 'on-water' heterogeneous catalysis. <i>Journal of Physics Condensed Matter</i> , 2010 , 22, 284117	1.8	17
27	Comment on "Inaccuracy of density functional theory calculations for dihydrogen binding energetics onto Ca cation centers". <i>Physical Review Letters</i> , 2010 , 104, 179601; author reply 179602	7.4	17
26	Effects of ligands and spin-polarization on the preferred conformation of distannynes. <i>Dalton Transactions</i> , 2008 , 4428-35	4.3	1
25	Fast evaluation of scaled opposite spin second-order Mller-Plesset correlation energies using auxiliary basis expansions and exploiting sparsity. <i>Journal of Computational Chemistry</i> , 2007 , 28, 1953-6	54 ^{3.5}	53
24	On the nature of organic catalysis "on water". <i>Journal of the American Chemical Society</i> , 2007 , 129, 549.	2- 50.2	506

23	Phenol-benzene complexation dynamics: quantum chemistry calculation, molecular dynamics simulations, and two dimensional IR spectroscopy. <i>Journal of Chemical Physics</i> , 2006 , 125, 244508	3.9	47
22	A fast correlated electronic structure method for computing interaction energies of large van der Waals complexes applied to the fullerene-porphyrin dimer. <i>Physical Chemistry Chemical Physics</i> , 2006 , 8, 2831-40	3.6	61
21	Ab initio quantum chemistry calculations on the electronic structure of heavier alkyne congeners: diradical character and reactivity. <i>Journal of the American Chemical Society</i> , 2006 , 128, 7185-92	16.4	86
20	A Fast Implementation of Perfect Pairing and Imperfect Pairing Using the Resolution of the Identity Approximation. <i>Journal of Chemical Theory and Computation</i> , 2006 , 2, 300-5	6.4	18
19	Advances in methods and algorithms in a modern quantum chemistry program package. <i>Physical Chemistry Chemical Physics</i> , 2006 , 8, 3172-91	3.6	2371
18	A Resolution-Of-The-Identity Implementation of the Local Triatomics-In-Molecules Model for Second-Order Mller-Plesset Perturbation Theory with Application to Alanine Tetrapeptide Conformational Energies. <i>Journal of Chemical Theory and Computation</i> , 2005 , 1, 862-76	6.4	82
17	Cycloaddition of benzene on Si(100) and its surface conversions. <i>Journal of the American Chemical Society</i> , 2005 , 127, 3131-9	16.4	47
16	Scaled opposite spin second order Mler-Plesset theory with improved physical description of long-range dispersion interactions. <i>Journal of Physical Chemistry A</i> , 2005 , 109, 7598-605	2.8	78
15	Fast electronic structure methods for strongly correlated molecular systems. <i>Journal of Physics: Conference Series</i> , 2005 , 16, 233-242	0.3	3
14	Auxiliary basis expansions for large-scale electronic structure calculations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 6692-7	11.5	171
13	What is the nature of the long bond in the TCNE22IIIdimer?. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 2008-2011	3.6	83
12	An Orbital-Based Definition of Radical and Multiradical Character. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 10270-10279	2.8	12
11	Aromaticity of four-membered-ring 6pi-electron systems: N2S2 and Li2C4H4. <i>Journal of the American Chemical Society</i> , 2004 , 126, 3132-8	16.4	75
10	Intermolecular pi-to-pi bonding between stacked aromatic dyads. Experimental and theoretical binding energies and near-IR optical transitions for phenalenyl radical/radical versus radical/cation dimerizations. <i>Journal of the American Chemical Society</i> , 2004 , 126, 13850-8	16.4	249
9	Scaled opposite-spin second order Mller-Plesset correlation energy: an economical electronic structure method. <i>Journal of Chemical Physics</i> , 2004 , 121, 9793-802	3.9	440
8	How diradicaloid is a stable diradical?. ChemPhysChem, 2003, 4, 522-5	3.2	95
7	Are both symmetric and buckled dimers on Si(100) minima? Density functional and multireference perturbation theory calculations. <i>Journal of Chemical Physics</i> , 2003 , 119, 10917-10923	3.9	42
6	Controlling the Extent of Diradical Character by Utilizing Neighboring Group Interactions. <i>Journal of Physical Chemistry A</i> , 2003 , 107, 7475-7481	2.8	50

LIST OF PUBLICATIONS

5	An ab initio study of the structure of two-, three- and five-dimersilicon clusters: An approach to the Si(100) surface. <i>Theoretical Chemistry Accounts</i> , 2003 , 109, 268-273	1.9	18
4	Adsorption of Water on the Si(100) Surface: An Ab Initio and QM/MM Cluster Study. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 4039-4044	3.4	38
3	Safeguarding the RuO2 phase against lattice oxygen oxidation during acidic water electrooxidation. <i>Energy and Environmental Science</i> ,	35.4	4
2	Heterogeneous Catalysis in Grammar School. Journal of Physical Chemistry C,	3.8	O
1	Classifying Intermetallic Tetragonal Phase of All-d-Metal Heusler Alloys for Catalysis Applications. <i>Topics in Catalysis</i> ,1	2.3	1