
Caterina Mian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8433516/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alemtuzumabâ€induced autoimmune thyroid events in patients with relapsingâ€remitting multiple sclerosis: A realâ€life and monocentric experience at a tertiaryâ€level centre. Clinical Endocrinology, 2022, 97, 331-338.	1.2	4
2	Can ultrasensitive thyroglobulin immunoassays avoid the need for ultrasound in thyroid cancer follow-up?. Endocrine, 2022, 75, 837-845.	1.1	2
3	Papillary Thyroid Carcinoma: Molecular Distinction by MicroRNA Profiling. Frontiers in Endocrinology, 2022, 13, 834075.	1.5	5
4	Overexpression of miR-375 and L-type Amino Acid Transporter 1 in Pheochromocytoma and Their Molecular and Functional Implications. International Journal of Molecular Sciences, 2022, 23, 2413.	1.8	4
5	The GIP/GIPR axis in medullary thyroid cancer: clinical and molecular findings. Endocrine-Related Cancer, 2022, 29, 273-284.	1.6	9
6	TSH-receptor autoantibodies in patients with chronic thyroiditis and hypothyroidism. Clinical Chemistry and Laboratory Medicine, 2022, 60, 1020-1030.	1.4	0
7	The role of the size in thyroid cancer risk stratification. Scientific Reports, 2021, 11, 7303.	1.6	2
8	Serum miR-375 for Diagnostic and Prognostic Purposes in Medullary Thyroid Carcinoma. Frontiers in Endocrinology, 2021, 12, 647369.	1.5	12
9	MicroRNAs in Medullary Thyroid Carcinoma: A State of the Art Review of the Regulatory Mechanisms and Future Perspectives. Cells, 2021, 10, 955.	1.8	8
10	<i>BRAF</i> V600E Status Sharply Differentiates Lymph Node Metastasis-associated Mortality Risk in Papillary Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 3228-3238.	1.8	36
11	Expression and Clinical Utility of Transcription Factors Involved in Epithelial–Mesenchymal Transition during Thyroid Cancer Progression. Journal of Clinical Medicine, 2021, 10, 4076.	1.0	19
12	Epigenetic in medullary thyroid cancer: the role of microRNA in tumorigenesis and prognosis. Current Opinion in Oncology, 2021, 33, 9-15.	1.1	6
13	Basal and Calcium-Stimulated Procalcitonin for the Diagnosis of Medullary Thyroid Cancers: Lights and Shadows. Frontiers in Endocrinology, 2021, 12, 754565.	1.5	9
14	Longâ€Term Outcomes of Parathyroidectomy in Hyperparathyroidismâ€Jaw Tumor Syndrome: Analysis of Five Families with <i>CDC73</i> Mutations. World Journal of Surgery, 2020, 44, 508-516.	0.8	12
15	BRAF V600E status may facilitate decision-making on active surveillance of low-risk papillary thyroid microcarcinoma. European Journal of Cancer, 2020, 124, 161-169.	1.3	41
16	Changing Dietary Habits in Veneto Region over Two Decades: Still a Long Road to Go to Reach an Iodine-Sufficient Status. Nutrients, 2020, 12, 2399.	1.7	15
17	Prognostic significance of the sum of the diameters of single foci in multifocal papillary thyroid cancer: the concept of new-old tumor burden. Therapeutic Advances in Endocrinology and Metabolism, 2020, 11, 204201882096432.	1.4	3
18	First proof of association between autoimmune polyglandular syndrome and multiple endocrine neoplasia in humans. Endocrine Journal, 2020, 67, 929-934.	0.7	2

#	Article	IF	CITATIONS
19	Selenium Supplementation, Body Mass Composition, and Leptin Levels in Patients with Obesity on a Balanced Mildly Hypocaloric Diet: A Pilot Study. International Journal of Endocrinology, 2020, 2020, 1-7.	0.6	29
20	PTH: Redefining Reference Ranges in a Healthy Population—The Role of Interfering Factors and the Type of Laboratory Assay. International Journal of Endocrinology, 2020, 2020, 1-7.	0.6	5
21	Primary hyperparathyroidism as first manifestation in multiple endocrine neoplasia type 2A: an international multicenter study. Endocrine Connections, 2020, 9, 489-497.	0.8	17
22	Comparison of Pheochromocytoma-Specific Morbidity and Mortality Among Adults With Bilateral Pheochromocytomas Undergoing Total Adrenalectomy vs Cortical-Sparing Adrenalectomy. JAMA Network Open, 2019, 2, e198898.	2.8	80
23	<p>Programmed cell death 4 (PDCD4) as a novel prognostic marker for papillary thyroid carcinoma</p> . Cancer Management and Research, 2019, Volume 11, 7845-7855.	0.9	6
24	Epidemiology of Simultaneous Medullary and Papillary Thyroid Carcinomas (MTC/PTC): An Italian Multicenter Study. Cancers, 2019, 11, 1516.	1.7	21
25	The Effects of Iodine Supplementation in Pregnancy on Iodine Status, Thyroglobulin Levels and Thyroid Function Parameters: Results from a Randomized Controlled Clinical Trial in a Mild-to-Moderate Iodine Deficiency Area. Nutrients, 2019, 11, 2639.	1.7	32
26	The iodine nutritional status in the Italian population: data from the Italian National Observatory for Monitoring Iodine Prophylaxis (OSNAMI) (period 2015–2019). American Journal of Clinical Nutrition, 2019, 110, 1265-1266.	2.2	19
27	Differentiated Thyroid Carcinoma in Pediatric Age: Genetic and Clinical Scenario. Frontiers in Endocrinology, 2019, 10, 552.	1.5	33
28	Biological Effects of EF24, a Curcumin Derivative, Alone or Combined with Mitotane in Adrenocortical Tumor Cell Lines. Molecules, 2019, 24, 2202.	1.7	22
29	Cure and survival of sporadic medullary thyroid carcinoma following systematic preoperative calcitonin screening. Langenbeck's Archives of Surgery, 2019, 404, 411-419.	0.8	15
30	Novel Prognostic Factors Associated with Cell Cycle Control in Sporadic Medullary Thyroid Cancer Patients. International Journal of Endocrinology, 2019, 2019, 1-7.	0.6	8
31	A Novel Thyroid Hormone Receptor Beta Mutation (G357R) in a Family with Resistance to Thyroid Hormone Beta: Extending the Borders of the "Hot―Region in the <i>THRB</i> Gene. Thyroid, 2019, 29, 449-451.	2.4	5
32	Natural history, treatment, and long-term follow up of patients with multiple endocrine neoplasia type 2B: an international, multicentre, retrospective study. Lancet Diabetes and Endocrinology,the, 2019, 7, 213-220.	5.5	86
33	Unique Case of a Large Indolent Medullary Thyroid Carcinoma: Time to Reconsider the Medullary Thyroid Adenoma Entity?. European Thyroid Journal, 2019, 8, 108-112.	1.2	5
34	Crude extract of <i>Origanum vulgare</i> L. induced cell death and suppressed MAPK and PI3/Akt signaling pathways in SW13 and H295R cell lines. Natural Product Research, 2019, 33, 1646-1649.	1.0	19
35	Anticancer Effects of Wild Mountain Mentha longifolia Extract in Adrenocortical Tumor Cell Models. Frontiers in Pharmacology, 2019, 10, 1647.	1.6	14
36	Prognostic significance of TERT promoter and BRAF mutations in TIR-4 and TIR-5 thyroid cytology. European Journal of Endocrinology, 2019, 181, 1-11.	1.9	39

#	Article	IF	CITATIONS
37	Efficacy of educational intervention to improve awareness of the importance of iodine, use of iodized salt, and dietary iodine intake in northeastern Italian schoolchildren. Nutrition, 2018, 53, 134-139.	1.1	12
38	BRAF V600E Mutation-Assisted Risk Stratification of Solitary Intrathyroidal Papillary Thyroid Cancer for Precision Treatment. Journal of the National Cancer Institute, 2018, 110, 362-370.	3.0	60
39	Longâ€Term Outcome After Surgery for Medullary Thyroid Carcinoma: A Singleâ€Center Experience. World Journal of Surgery, 2018, 42, 367-375.	0.8	29
40	The Hobnail Variant of Papillary Thyroid Carcinoma: Clinical/Molecular Characteristics of a Large Monocentric Series and Comparison with Conventional Histotypes. Thyroid, 2018, 28, 96-103.	2.4	40
41	Patient Age–Associated Mortality Risk Is Differentiated by <i>BRAF</i> V600E Status in Papillary Thyroid Cancer. Journal of Clinical Oncology, 2018, 36, 438-445.	0.8	102
42	<i>BRAF</i> V600E Confers Male Sex Disease-Specific Mortality Risk in Patients With Papillary Thyroid Cancer. Journal of Clinical Oncology, 2018, 36, 2787-2795.	0.8	58
43	Insulin autoimmune syndrome: from diagnosis to clinical management. Annals of Translational Medicine, 2018, 6, 335-335.	0.7	89
44	EF24 (a Curcumin Analog) and ZSTK474 Emphasize the Effect of Cabozantinib in Medullary Thyroid Cancer. Endocrinology, 2018, 159, 2348-2360.	1.4	21
45	CTLA-4 and PD-1 Ligand Gene Expression in Epithelial Thyroid Cancers. International Journal of Endocrinology, 2018, 2018, 1-10.	0.6	20
46	Association of primary aldosteronism with chronic thyroiditis. Endocrine, 2017, 55, 303-306.	1.1	9
47	Deregulated expression of VHL mRNA variants in papillary thyroid cancer. Molecular and Cellular Endocrinology, 2017, 443, 121-127.	1.6	9
48	The Prognostic Value of Tumor Multifocality in Clinical Outcomes of Papillary Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3241-3250.	1.8	80
49	Expression and prognostic value of the cell polarity PAR complex members in thyroid cancer. International Journal of Oncology, 2017, 50, 1413-1422.	1.4	7
50	MiR-375 and YAP1 expression profiling in medullary thyroid carcinoma and their correlation with clinical–pathological features and outcome. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2017, 471, 651-658.	1.4	25
51	The penetrance of MEN2 pheochromocytoma is not only determined by RET mutations. Endocrine-Related Cancer, 2017, 24, L63-L67.	1.6	19
52	Frequency and Significance of Ras, Tert Promoter, and Braf Mutations in Cytologically Indeterminate Thyroid Nodules: A Monocentric Case Series at a Tertiary-Level Endocrinology Unit. Frontiers in Endocrinology, 2017, 8, 273.	1.5	31
53	Prognostic Impact of miR-224 and RAS Mutations in Medullary Thyroid Carcinoma. International Journal of Endocrinology, 2017, 2017, 1-9.	0.6	23
54	Calcitonin measurement and immunoassay interference: a case report and literature review. Clinical Chemistry and Laboratory Medicine, 2016, 54, 1861-1870.	1.4	27

#	Article	IF	CITATIONS
55	The aurora kinase inhibitor VX-680 shows anti-cancer effects in primary metastatic cells and the SW13 cell line. Investigational New Drugs, 2016, 34, 531-540.	1.2	13
56	lodine status from childhood to adulthood in females living in North-East Italy: Iodine deficiency is still an issue. European Journal of Nutrition, 2016, 55, 335-340.	1.8	20
57	Differential Clinicopathological Risk and Prognosis of Major Papillary Thyroid Cancer Variants. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 264-274.	1.8	179
58	BRAF analysis before surgery for papillary thyroid carcinoma: correlation with clinicopathological features and prognosis in a single-institution prospective experience. Clinical Chemistry and Laboratory Medicine, 2016, 54, 1531-1539.	1.4	12
59	Overexpression of L-Type Amino Acid Transporter 1 (LAT1) and 2 (LAT2): Novel Markers of Neuroendocrine Tumors. PLoS ONE, 2016, 11, e0156044.	1.1	45
60	Synergistic antitumour activity of <scp>RAF</scp> 265 and <scp>ZSTK</scp> 474 on human <scp>TT</scp> medullary thyroid cancer cells. Journal of Cellular and Molecular Medicine, 2015, 19, 2244-2252.	1.6	23
61	Early, Prophylactic Thyroidectomy in Hereditary Medullary Thyroid Carcinoma. American Journal of Clinical Oncology: Cancer Clinical Trials, 2015, 38, 508-513.	0.6	21
62	Deregulated Expression of Aurora Kinases Is Not a Prognostic Biomarker in Papillary Thyroid Cancer Patients. PLoS ONE, 2015, 10, e0121514.	1.1	27
63	Transient hypercortisolism and symptomatic hyperthyroidism associated to primary hyperparathyroidism in an elderly patient: case report and literature review. BMC Endocrine Disorders, 2015, 15, 4.	0.9	2
64	Mitogen-Activated Protein Kinase Pathway: Genetic Analysis of 95 Adrenocortical Tumors. Cancer Investigation, 2015, 33, 526-531.	0.6	6
65	The PDCD4/miR-21 pathway in medullary thyroid carcinoma. Human Pathology, 2015, 46, 50-57.	1.1	66
66	Association Between <i>BRAF</i> V600E Mutation and Recurrence of Papillary Thyroid Cancer. Journal of Clinical Oncology, 2015, 33, 42-50.	0.8	448
67	A constitutive active MAPK/ERK pathway due to BRAFV600E positively regulates AHR pathway in PTC. Oncotarget, 2015, 6, 32104-32114.	0.8	23
68	Calcium/Calmodulin-Dependent Protein Kinase II and Its Endogenous Inhibitor α in Medullary Thyroid Cancer. Clinical Cancer Research, 2014, 20, 1513-1520.	3.2	18
69	High-throughput mutation profiling improves diagnostic stratification of sporadic medullary thyroid carcinomas. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2014, 465, 73-78.	1.4	66
70	Refining Calcium Test for the Diagnosis of Medullary Thyroid Cancer: Cutoffs, Procedures, and Safety. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 1656-1664.	1.8	98
71	Prevalence, Tumorigenic Role, and Biochemical Implications of Rare <i>BRAF</i> Alterations. Thyroid, 2014, 24, 809-819.	2.4	51
72	The combination of RAF265, SB590885, ZSTK474 on thyroid cancer cell lines deeply impact on proliferation and MAPK and PI3K/Akt signaling pathways. Investigational New Drugs, 2014, 32, 626-635.	1.2	22

#	Article	IF	CITATIONS
73	Outcomes of adrenal-sparing surgery or total adrenalectomy in phaeochromocytoma associated with multiple endocrine neoplasia type 2: an international retrospective population-based study. Lancet Oncology, The, 2014, 15, 648-655.	5.1	137
74	The antiproliferative effects of ouabain and everolimus on adrenocortical tumor cells. Endocrine Journal, 2014, 61, 41-53.	0.7	32
75	AHR Over-Expression in Papillary Thyroid Carcinoma: Clinical and Molecular Assessments in a Series of Italian Acromegalic Patients with a Long-Term Follow-Up. PLoS ONE, 2014, 9, e101560.	1.1	27
76	Association Between BRAF V600E Mutation and Mortality in Patients With Papillary Thyroid Cancer. JAMA - Journal of the American Medical Association, 2013, 309, 1493.	3.8	775
77	PDCD4 expression in thyroid neoplasia. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2013, 462, 95-100.	1.4	22
78	Evidence of a Low Prevalence of <i>RAS</i> Mutations in a Large Medullary Thyroid Cancer Series. Thyroid, 2013, 23, 50-57.	2.4	151
79	Frequent TSH Receptor Genetic Alterations with Variable Signaling Impairment in a Large Series of Children with Nonautoimmune Isolated Hyperthyrotropinemia. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E156-E160.	1.8	47
80	Thyroid node assessment: how can we avoid unnecessary surgical procedures?. Expert Review of Endocrinology and Metabolism, 2012, 7, 583-585.	1.2	0
81	Comparison of the diagnostic accuracy of combined elastosonography and <scp>BRAF</scp> analysis <i>vs</i> cytology and ultrasonography for thyroid nodule suspected of malignancy. Clinical Endocrinology, 2012, 77, 608-614.	1.2	10
82	In papillary thyroid carcinoma <scp>BRAF</scp> ^{V600E} is associated with increased expression of the urokinase plasminogen activator †and its cognate receptor, but not with diseaseâ€free interval. Clinical Endocrinology, 2012, 77, 780-786.	1.2	38
83	Comparison of Calcium and Pentagastrin Tests for the Diagnosis and Follow-Up of Medullary Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 905-913.	1.8	95
84	MicroRNA Profiles in Familial and Sporadic Medullary Thyroid Carcinoma: Preliminary Relationships with RET Status and Outcome. Thyroid, 2012, 22, 890-896.	2.4	116
85	RET codon 609 mutations: a contribution for better clinical managing. Clinics, 2012, 67, 33-36.	0.6	7
86	Aurora kinases are expressed in medullary thyroid carcinoma (MTC) and their inhibition suppresses in vitro growth and tumorigenicity of the MTC derived cell line TT. BMC Cancer, 2011, 11, 411.	1.1	25
87	Risk profiles and penetrance estimations in multiple endocrine neoplasia type 2A caused by germline RET mutations located in exon 10. Human Mutation, 2011, 32, 51-58.	1.1	117
88	High Expression of the Urokinase Plasminogen Activator and Its Cognate Receptor Associates with Advanced Stages and Reduced Disease-Free Interval in Papillary Thyroid Carcinoma. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 504-508.	1.8	43
89	<i>BRAF</i> ^{K601E} Mutation in a Patient with a Follicular Thyroid Carcinoma. Thyroid, 2011, 21, 1393-1396.	2.4	48
90	Combined RET and Ki-67 assessment in sporadic medullary thyroid carcinoma: a useful tool for patient risk stratification. European Journal of Endocrinology, 2011, 164, 971-976.	1.9	86

#	Article	IF	CITATIONS
91	<i>BRAF</i> analysis by fine needle aspiration biopsy of thyroid nodules improves preoperative identification of papillary thyroid carcinoma and represents a prognostic factor. A mono-institutional experience. Clinical Chemistry and Laboratory Medicine, 2011, 49, 325-329.	1.4	48
92	Follicular Thyroid Carcinoma with Metastases to the Pituitary Causing Pituitary Insufficiency. Thyroid, 2011, 21, 921-925.	2.4	16
93	Influence of physiological dietary selenium supplementation on the natural course of autoimmune thyroiditis. Clinical Endocrinology, 2010, 73, 535-539.	1.2	58
94	BRAF in primary and recurrent papillary thyroid cancers: the relationship with 1311 and 2-[18F]fluoro-2-deoxy-d-glucose uptake ability. European Journal of Endocrinology, 2010, 163, 659-663.	1.9	55
95	Multiple endocrine neoplasia type 2 syndromes (MEN 2): results from the ItaMEN network analysis on the prevalence of different genotypes and phenotypes. European Journal of Endocrinology, 2010, 163, 963.	1.9	1
96	Multiple endocrine neoplasia type 2 syndromes (MEN 2): results from the ItaMEN network analysis on the prevalence of different genotypes and phenotypes. European Journal of Endocrinology, 2010, 163, 301-308.	1.9	111
97	Characterization of the largest kindred with MEN2A due to a Cys609Ser RET mutation. Familial Cancer, 2009, 8, 379-382.	0.9	14
98	lodine status in pregnancy: role of dietary habits and geographical origin. Clinical Endocrinology, 2009, 70, 776-780.	1.2	49
99	Galectin-3 Cytotest in Thyroid Follicular Neoplasia. Acta Cytologica, 2009, 53, 533-539.	0.7	17
100	Molecular characteristics in papillary thyroid cancers (PTCs) with no ¹³¹ I uptake. Clinical Endocrinology, 2008, 68, 108-116.	1.2	117
101	<i>RET</i> genotypes in sporadic medullary thyroid cancer: studies in a large Italian series. Clinical Endocrinology, 2008, 69, 418-425.	1.2	36
102	Galectin-3-expression analysis in the surgical selection of follicular thyroid nodules with indeterminate fine-needle aspiration cytology: a prospective multicentre study. Lancet Oncology, The, 2008, 9, 543-549.	5.1	284
103	HEX, PAX-8 and TTF-1 gene expression in human thyroid tissues: a comparative analysis with other genes involved in iodide metabolism. Clinical Endocrinology, 2006, 64, 060301024427002.	1.2	17
104	Familial Nonsyndromic Pheochromocytoma. Annals of the New York Academy of Sciences, 2006, 1073, 149-155.	1.8	15
105	PAX8 and peroxisome proliferator-activated receptor gamma 1 gene expression status in benign and malignant thyroid tissues. European Journal of Endocrinology, 2004, 151, 367-374.	1.9	44
106	Sodium lodide Symporter and Pendrin Expression in Human Thyroid Tissues. Thyroid, 2001, 11, 825-830.	2.4	47
107	Expression of Pendrin and the Pendred Syndrome (PDS) Gene in Human Thyroid Tissues*. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 2028-2033.	1.8	103