Danielle Naville

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8433434/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mutations in MRAP, encoding a new interacting partner of the ACTH receptor, cause familial glucocorticoid deficiency type 2. Nature Genetics, 2005, 37, 166-170.	9.4	388
2	Mutant WD-repeat protein in triple-A syndrome. Nature Genetics, 2000, 26, 332-335.	9.4	304
3	Nonclassic Lipoid Congenital Adrenal Hyperplasia Masquerading as Familial Glucocorticoid Deficiency. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 3865-3871.	1.8	138
4	Regulation of corticotropin receptor number and messenger RNA in cultured human adrenocortical cells by corticotropin and angiotensin II Journal of Clinical Investigation, 1994, 93, 1828-1833.	3.9	138
5	Chronic Consumption of Farmed Salmon Containing Persistent Organic Pollutants Causes Insulin Resistance and Obesity in Mice. PLoS ONE, 2011, 6, e25170.	1.1	133
6	Study of the Alteration of Gene Expression in Adipose Tissue of Diet-Induced Obese Mice by Microarray and Reverse Transcription-Polymerase Chain Reaction Analyses. Endocrinology, 2003, 144, 4773-4782.	1.4	129
7	Endocrine disrupting chemicals in mixture and obesity, diabetes and related metabolic disorders. World Journal of Biological Chemistry, 2017, 8, 108.	1.7	90
8	Demonstration by transfection studies that mutations in the adrenocorticotropin receptor gene are one cause of the hereditary syndrome of glucocorticoid deficiency. Journal of Clinical Endocrinology and Metabolism, 1996, 81, 1442-1448.	1.8	65
9	Somatomedin-C/insulin-like growth factor 1-like material secreted by porcine sertoli cells in vitro: Characterization and regulation. Biochemical and Biophysical Research Communications, 1987, 146, 1009-1017.	1.0	63
10	Control of production of insulin-like growth factor I by pig Leydig and Sertoli cells cultured alone or together. Cell-cell interactions. Molecular and Cellular Endocrinology, 1990, 70, 217-224.	1.6	63
11	Environmental Pollutants and Metabolic Disorders: The Multi-Exposure Scenario of Life. Frontiers in Endocrinology, 2018, 9, 582.	1.5	60
12	Regulation of corticotropin and steroidogenic enzyme mRNAs in human fetal adrenal cells by corticotropin, angiotensin-II and transforming growth factor β1. Molecular and Cellular Endocrinology, 1994, 106, 137-143.	1.6	57
13	Lowâ€dose food contaminants trigger sexâ€specific, hepatic metabolic changes in the progeny of obese mice. FASEB Journal, 2013, 27, 3860-3870.	0.2	57
14	3β-Hydroxysteroid dehydrogenase/Δ5→4-isomerase expression in rat and characterization of the testis isoform. Molecular and Cellular Endocrinology, 1991, 80, 21-31.	1.6	54
15	Regulation of 3β-Hydroxysteroid Dehydrogenase in Adrenocortical Cells: Effects of Angiotensin-II and Transforming Growth Factor Beta. Endocrine Research, 1991, 17, 281-296.	0.6	51
16	Genomic Structure and Promoter Characterization of the Human ACTH Receptor Gene. Biochemical and Biophysical Research Communications, 1997, 230, 7-12.	1.0	49
17	Regulation of Expression of Male-Specific Rat Liver Microsomal 3β-Hydroxysteroid Dehydrogenase. Molecular Endocrinology, 1991, 5, 1090-1100.	3.7	48
18	Three Steroidogenic Factor-1 Binding Elements Are Required for Constitutive and cAMP- Regulated Expression of the Human Adrenocorticotropin Receptor Gene. Biochemical and Biophysical Research Communications, 1999, 255, 28-33.	1.0	45

DANIELLE NAVILLE

#	Article	IF	CITATIONS
19	Sertoli-Leydig Cell Communications. Annals of the New York Academy of Sciences, 1989, 564, 210-231.	1.8	44
20	Regulation of expression of the 3β-hydroxysteroid dehydrogenases of human placenta and fetal adrenal. Journal of Steroid Biochemistry and Molecular Biology, 1993, 47, 151-159.	1.2	44
21	CCAAT/enhancer-binding proteins (C/EBPs) regulate theÂbasal andÂcAMP-induced transcription ofÂtheÂhuman 11β-hydroxysteroid dehydrogenase encoding gene inÂadipose cells. Biochimie, 2006, 88, 1115-1124.	1.3	44
22	Characterization and regulation of the angiotensin II type-1 receptor (binding and mRNA) in human adrenal fasciculata-reticularis cells. FEBS Letters, 1993, 321, 184-188.	1.3	43
23	Effects of transforming growth factor-beta 1 on human adrenocortical fasciculata-reticularis cell differentiated functions. Journal of Clinical Endocrinology and Metabolism, 1994, 79, 1033-1039.	1.8	42
24	Regulation of 3β-Hydroxysteroid Dehydrogenase/Δ _{5→4} - Isomerase Expression by Adrenocorticotropin in Bovine Adrenocortical Cells*. Endocrinology, 1991, 128, 139-145.	1.4	36
25	Agouti-Related Protein Antagonizes Glucocorticoid Production Induced through Melanocortin 4 Receptor Activation in Bovine Adrenal Cells: A Possible Autocrine Control. Endocrinology, 2004, 145, 541-547.	1.4	36
26	A Novel Inhibitory Protein in Adipose Tissue, the Aldo-Keto Reductase AKR1B7: Its Role in Adipogenesis. Endocrinology, 2007, 148, 1996-2005.	1.4	35
27	Prostaglandin E2Is a Positive Regulator of Adrenocorticotropin Receptors, 3β-Hydroxysteroid Dehydrogenase, and 17α-Hydroxylase Expression in Bovine Adrenocortical Cells*. Endocrinology, 1991, 129, 1333-1339.	1.4	34
28	A Steroidogenic Factor-1 Binding Element Is Essential for Basal Human ACTH Receptor Gene Transcription. Biochemical and Biophysical Research Communications, 1998, 247, 28-32.	1.0	33
29	Corticotropin regulation of 3β-hydroxysteroid dehydrogenase/Δ5→4-isomerase in ovine adrenocortical cells: Inhibition by transforming growth factor β. Molecular and Cellular Endocrinology, 1991, 75, 257-263.	1.6	32
30	Stable expression of normal and mutant human ACTH receptor. Molecular and Cellular Endocrinology, 1997, 129, 83-90.	1.6	32
31	Expression of the human melanocortin-2 receptor in different eukaryotic cells. Peptides, 2005, 26, 1842-1847.	1.2	31
32	Low-dose pollutant mixture triggers metabolic disturbances in female mice leading to common and specific features as compared to a high-fat diet. Journal of Nutritional Biochemistry, 2017, 45, 83-93.	1.9	29
33	Characterization of the transcription start site of the ACTH receptor gene: presence of an intronic sequence in the 5'-flanking region. Molecular and Cellular Endocrinology, 1994, 106, 131-135.	1.6	27
34	Linkage of one gene for familial glucocorticoid deficiency type 2 (FGD2) to chromosome 8q and further evidence of heterogeneity. Human Genetics, 2002, 111, 428-434.	1.8	27
35	Differentiating effects of somatomedin-C/insulin-like growth factor I and insulin on Leydig and Sertoli cell functions. Reproduction, Nutrition, Development, 1988, 28, 989-1008.	1.9	25
36	Metabolic Outcome of Female Mice Exposed to a Mixture of Low-Dose Pollutants in a Diet-Induced Obesity Model. PLoS ONE, 2015, 10, e0124015.	1.1	25

DANIELLE NAVILLE

#	Article	IF	CITATIONS
37	Leptin Infusion and Obesity in Mouse Cause Alterations in the Hypothalamic Melanocortin System. Obesity, 2008, 16, 1763-1769.	1.5	24
38	Role of Hypothalamic Melanocortin System in Adaptation of Food Intake to Food Protein Increase in Mice. PLoS ONE, 2011, 6, e19107.	1.1	24
39	Exclusion of the Adrenocorticotropin (ACTH) Receptor (MC2R) Locus in Some Families with ACTH Resistance but No Mutations of the MC2R Coding Sequence (Familial Glucocorticoid Deficiency Type) Tj ETQq1 1	017884314	1 ngBT /Overl
40	Functional activity of 3β-hydroxysteroid dehydrogenase/isomerase. Endocrine Research, 1998, 24, 549-557.	0.6	22
41	Functional relationships between three novel homozygous mutations in the ACTH receptor gene and familial glucocorticoid deficiency. Journal of Molecular Medicine, 2002, 80, 406-411.	1.7	22
42	Link between Intestinal CD36 Ligand Binding and Satiety Induced by a High Protein Diet in Mice. PLoS ONE, 2012, 7, e30686.	1.1	22
43	Multiple isoforms of 3 beta-hydroxysteroid dehydrogenase/delta 5—>4-isomerase in mouse tissues: male-specific isoforms are expressed in the gonads and liver. , 0, .		20
44	Activator protein-1 is necessary for angiotensin-II stimulation of human adrenocorticotropin receptor gene transcription. FEBS Journal, 2001, 268, 1802-1810.	0.2	16
45	Metabolic and melanocortin gene expression alterations in male offspring of obese mice. Molecular and Cellular Endocrinology, 2010, 319, 99-108.	1.6	16
46	Chronic exposure to a pollutant mixture at low doses led to tissue-specific metabolic alterations in male mice fed standard andÂhigh-fat high-sucrose diet. Chemosphere, 2019, 220, 1187-1199.	4.2	16
47	Compound Heterozygosity of a Frameshift Mutation in the Coding Region and a Single Base Substitution in the Promoter of the ACTH Receptor Gene in a Family with Isolated Glucocorticoid Deficiency. Journal of Pediatric Endocrinology and Metabolism, 2006, 19, 1157-66.	0.4	14
48	Evidence for estrogeno-mimetic effects of a mixture of low-dose pollutants in a model of ovariectomized mice. Environmental Toxicology and Pharmacology, 2018, 57, 34-40.	2.0	14
49	Syndrome of Congenital Adrenocortical Unresponsiveness to ACTH. Report of Six Patients. Journal of Pediatric Endocrinology and Metabolism, 2001, 14, 1113-8.	0.4	13
50	Lifelong consumption of low-dosed food pollutants and metabolic health. Journal of Epidemiology and Community Health, 2015, 69, 512-515.	2.0	12
51	Direct and indirect impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on adult mouse Leydig cells: An in vitro study. Toxicology Letters, 2011, 207, 251-257.	0.4	11
52	The adrenocorticotropic hormone receptor. Current Opinion in Endocrinology, Diabetes and Obesity, 2001, 8, 112-117.	0.6	10
53	Characterization of Cell Lines Stably Expressing Human Normal or Mutated EGFP-Tagged MC4R. Journal of Biochemistry, 2004, 135, 541-546.	0.9	10
54	Sustained inhibitory effect of Agouti Related Protein on the ACTH-induced cortisol production by bovine cultured adrenal cells. Regulatory Peptides, 2005, 124, 215-219.	1.9	10

DANIELLE NAVILLE

#	Article	IF	CITATIONS
55	Exposure to pollutants altered glucocorticoid signaling and clock gene expression in female mice. Evidence of tissue- and sex-specificity. Chemosphere, 2021, 262, 127841.	4.2	10
56	Role of Agouti-related protein in adrenal steroidogenesis. Molecular and Cellular Endocrinology, 2007, 265-266, 108-112.	1.6	9
57	Expression of the human melanocortin-4 receptor gene is controlled by several members of the Sp transcription factor family. Journal of Molecular Endocrinology, 2005, 34, 317-329.	1.1	8
58	Sex-specific metabolic alterations induced by environmental pollutants. Current Opinion in Toxicology, 2018, 8, 1-7.	2.6	5
59	Presence of multiple functional polyadenylation signals in the 3′-untranslated region of human corticotropin receptor cDNA. Biochimica Et Biophysica Acta - Molecular Cell Research, 1997, 1356, 249-252.	1.9	4
60	An E-box-containing region is involved in the tissue-specific expression of the human MC2R gene. Journal of Molecular Endocrinology, 2004, 32, 811-823.	1.1	4
61	Estrogen withdrawal and replacement differentially target liver and adipose tissues in female mice fed a high-fat high-sucrose diet: impact of a chronic exposure to a low-dose pollutant mixtureâ~†. Journal of Nutritional Biochemistry, 2019, 72, 108211.	1.9	4
62	THE HUMAN MC2-R GENE EXPRESSION: DIFFERENT ASPECTS OF ITS CONTROL. Endocrine Research, 2002, 28, 275-280.	0.6	3
63	Mutations in a Novel Gene, Encoding a Single Transmembrane Domain Protein Are Associated with Familial Glucocorticoid Deficiency Type 2. Endocrine Research, 2004, 30, 889-890.	0.6	3
64	Impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in adult mouse Leydig cells: An in vitro study. Toxicology Letters, 2011, 205, S38-S39.	0.4	2
65	Impact of Estrogen Withdrawal and Replacement in Female Mice along the Intestinal Tract. Comparison of E2 Replacement with the Effect of a Mixture of Low Dose Pollutants. International Journal of Environmental Research and Public Health, 2021, 18, 8685.	1.2	1
66	Impact of chronic exposure to a mixture of food contaminants on the metabolic status associated with obesity. Toxicology Letters, 2011, 205, S42.	0.4	0
67	Microarray Analysis of Alterations Induced by Obesity in White Adipose Tissue Gene Expression Profiling. , 2008, , 239-262.		0