Judith Bellmann-Strobl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8433218/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 4: Afferent visual system damage after optic neuritis in MOG-IgG-seropositive versus AQP4-IgG-seropositive patients. Journal of Neuroinflammation, 2016, 13, 282.	3.1	217
2	MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 3: Brainstem involvement - frequency, presentation and outcome. Journal of Neuroinflammation, 2016, 13, 281.	3.1	202
3	TNF-related apoptosis inducing ligand (TRAIL) as a potential response marker for interferon-beta treatment in multiple sclerosis. Lancet, The, 2003, 361, 2036-2043.	6.3	194
4	Changes in cerebral perfusion precede plaque formation in multiple sclerosis: a longitudinal perfusion MRI study. Brain, 2004, 127, 111-119.	3.7	194
5	Fatigue in multiple sclerosis is closely related to sleep disorders: a polysomnographic cross-sectional study. Multiple Sclerosis Journal, 2011, 17, 613-622.	1.4	172
6	Retinal ganglion cell and inner plexiform layer thinning in clinically isolated syndrome. Multiple Sclerosis Journal, 2013, 19, 1887-1895.	1.4	141
7	Microstructural visual system changes in AQP4-antibody–seropositive NMOSD. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e334.	3.1	128
8	Association of Retinal and Macular Damage with Brain Atrophy in Multiple Sclerosis. PLoS ONE, 2011, 6, e18132.	1.1	127
9	Endothelial dysfunction and altered endothelial biomarkers in patients with post-COVID-19 syndrome and chronic fatigue syndrome (ME/CFS). Journal of Translational Medicine, 2022, 20, 138.	1.8	116
10	Oral High-Dose Atorvastatin Treatment in Relapsing-Remitting Multiple Sclerosis. PLoS ONE, 2008, 3, e1928.	1.1	110
11	Patterns of retinal nerve fiber layer loss in multiple sclerosis patients with or without optic neuritis and glaucoma patients. Clinical Neurology and Neurosurgery, 2010, 112, 647-652.	0.6	107
12	Retinal ganglion cell loss in neuromyelitis optica: a longitudinal study. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 1259-1265.	0.9	100
13	Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation. NeuroImage: Clinical, 2019, 24, 102003.	1.4	93
14	Severe structural and functional visual system damage leads to profound loss of vision-related quality of life in patients with neuromyelitis optica spectrum disorders. Multiple Sclerosis and Related Disorders, 2017, 11, 45-50.	0.9	89
15	Correlation of self-assessed fatigue and alertness in multiple sclerosis. Multiple Sclerosis Journal, 2010, 16, 1134-1140.	1.4	88
16	Frequency of blood CX3CR1â€positive natural killer cells correlates with disease activity in multiple sclerosis patients. FASEB Journal, 2005, 19, 1902-1904.	0.2	85
17	Metabolic Changes in the Visual Cortex Are Linked to Retinal Nerve Fiber Layer Thinning in Multiple Sclerosis. PLoS ONE, 2011, 6, e18019.	1.1	76
18	Tracking CNS and systemic sources of oxidative stress during the course of chronic neuroinflammation. Acta Neuropathologica, 2015, 130, 799-814.	3.9	76

#	Article	IF	CITATIONS
19	Association of Retinal Ganglion Cell Layer Thickness With Future Disease Activity in Patients With Clinically Isolated Syndrome. JAMA Neurology, 2018, 75, 1071.	4.5	72
20	Multiple sclerosis–related fatigue: Altered resting-state functional connectivity of the ventral striatum and dorsolateral prefrontal cortex. Multiple Sclerosis Journal, 2019, 25, 554-564.	1.4	69
21	Attention Network Test reveals alerting network dysfunction in multiple sclerosis. Multiple Sclerosis Journal, 2010, 16, 93-99.	1.4	68
22	Impairment of contrast visual acuity as a functional correlate of retinal nerve fibre layer thinning and total macular volume reduction in multiple sclerosis. British Journal of Ophthalmology, 2012, 96, 62-67.	2.1	68
23	Gadopentetate but not gadobutrol accumulates in the dentate nucleus of multiple sclerosis patients. Multiple Sclerosis Journal, 2017, 23, 963-972.	1.4	65
24	Optical coherence tomography in myelin-oligodendrocyte-glycoprotein antibody-seropositive patients: a longitudinal study. Journal of Neuroinflammation, 2019, 16, 154.	3.1	61
25	Distinct functionality of neutrophils in multiple sclerosis and neuromyelitis optica. Multiple Sclerosis Journal, 2016, 22, 160-173.	1.4	59
26	Poor PASAT performance correlates with MRI contrast enhancement in multiple sclerosis. Neurology, 2009, 73, 1624-1627.	1.5	58
27	Ketogenic diet and fasting diet as Nutritional Approaches in Multiple Sclerosis (NAMS): protocol of a randomized controlled study. Trials, 2020, 21, 3.	0.7	55
28	Low 25â€hydroxyvitamin D, but not the bioavailable fraction of 25â€hydroxyvitamin D, is a risk factor for multiple sclerosis. European Journal of Neurology, 2016, 23, 62-67.	1.7	54
29	Safety and preliminary efficacy of deep transcranial magnetic stimulation in MS-related fatigue. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e423.	3.1	52
30	Altered fovea in AQP4-IgG–seropositive neuromyelitis optica spectrum disorders. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	50
31	Normal volumes and microstructural integrity of deep gray matter structures in AQP4+ NMOSD. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e229.	3.1	47
32	Higherâ€resolution MR elastography reveals early mechanical signatures of neuroinflammation in patients with clinically isolated syndrome. Journal of Magnetic Resonance Imaging, 2016, 44, 51-58.	1.9	47
33	Spinal cord lesions and atrophy in NMOSD with AQP4-IgG and MOG-IgG associated autoimmunity. Multiple Sclerosis Journal, 2019, 25, 1926-1936.	1.4	47
34	MRI Pattern Recognition in Multiple Sclerosis Normal-Appearing Brain Areas. PLoS ONE, 2011, 6, e21138.	1.1	46
35	Can we overcome the â€~clinico-radiological paradox' in multiple sclerosis?. Journal of Neurology, 2012, 259, 2151-2160.	1.8	45
36	Multiple Sclerosis: Modulation of Toll-Like Receptor (TLR) Expression by Interferon-β Includes Upregulation of TLR7 in Plasmacytoid Dendritic Cells. PLoS ONE, 2013, 8, e70626.	1.1	43

JUDITH BELLMANN-STROBL

#	Article	IF	CITATIONS
37	Intrathecal IgM production is a strong risk factor for early conversion to multiple sclerosis. Neurology, 2019, 93, e1439-e1451.	1.5	43
38	Prodromal headache in MOG-antibody positive optic neuritis. Multiple Sclerosis and Related Disorders, 2020, 40, 101965.	0.9	41
39	Pain in AQP4-IgG-positive and MOG-IgG-positive neuromyelitis optica spectrum disorders. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2018, 4, 205521731879668.	0.5	40
40	Comparison of probabilistic tractography and tract-based spatial statistics for assessing optic radiation damage in patients with autoimmune inflammatory disorders of the central nervous system. NeuroImage: Clinical, 2018, 19, 538-550.	1.4	40
41	Anatomical Wiring and Functional Networking Changes in the Visual System Following Optic Neuritis. JAMA Neurology, 2018, 75, 287.	4.5	39
42	Low contrast visual acuity testing is associated with cognitive performance in multiple sclerosis: a cross-sectional pilot study. BMC Neurology, 2013, 13, 167.	0.8	37
43	Association of Visual Impairment in Neuromyelitis Optica Spectrum Disorder With Visual Network Reorganization. JAMA Neurology, 2018, 75, 296.	4.5	34
44	Characterizing the phenotype of multiple sclerosis–associated depression in comparison with idiopathic major depression. Multiple Sclerosis Journal, 2016, 22, 1476-1484.	1.4	33
45	MR spectroscopy (MRS) and magnetisation transfer imaging (MTI), lesion load and clinical scores in early relapsing remitting multiple sclerosis: a combined cross-sectional and longitudinal study. European Radiology, 2009, 19, 2066-2074.	2.3	32
46	Standardization of T1w/T2w Ratio Improves Detection of Tissue Damage in Multiple Sclerosis. Frontiers in Neurology, 2019, 10, 334.	1.1	31
47	Stress-induced brain activity, brain atrophy, and clinical disability in multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13444-13449.	3.3	29
48	Increased Serum Neurofilament Light and Thin Ganglion Cell–Inner Plexiform Layer Are Additive Risk Factors for Disease Activity in Early Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	3.1	29
49	Epstein-Barr virus antibodies in serum and DNA load in saliva are not associated with radiological or clinical disease activity in patients with early multiple sclerosis. PLoS ONE, 2017, 12, e0175279.	1.1	29
50	Maximum walking speed in multiple sclerosis assessed with visual perceptive computing. PLoS ONE, 2017, 12, e0189281.	1.1	29
51	Next-generation sequencing identifies altered whole blood microRNAs in neuromyelitis optica spectrum disorder which may permit discrimination from multiple sclerosis. Journal of Neuroinflammation, 2015, 12, 196.	3.1	27
52	High-dose vitamin D supplementation in multiple sclerosis – results from the randomized EVIDIMS (efficacy of vitamin D supplementation in multiple sclerosis) trial. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2020, 6, 205521732090347.	0.5	27
53	Evaluation of the â€~ring sign' and the â€~core sign' as a magnetic resonance imaging marker of disease activity and progression in clinically isolated syndrome and early multiple sclerosis. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2020, 6, 205521732091548.	0.5	25
54	Low-Density Granulocytes Are a Novel Immunopathological Feature in Both Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder. Frontiers in Immunology, 2019, 10, 2725.	2.2	23

#	Article	IF	CITATIONS
55	Association of serum Epstein–Barr nuclear antigen-1 antibodies and intrathecal immunoglobulin synthesis in early multiple sclerosis. Journal of Neuroimmunology, 2015, 285, 156-160.	1.1	21
56	Brain activity, regional gray matter loss, and decision-making in multiple sclerosis. Multiple Sclerosis Journal, 2018, 24, 1163-1173.	1.4	21
57	Attack-related damage of thalamic nuclei in neuromyelitis optica spectrum disorders. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1156-1164.	0.9	20
58	Contribution of blood vessels to retinal nerve fiber layer thickness in NMOSD. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e338.	3.1	19
59	Treatment of Chronic Experimental Autoimmune Encephalomyelitis with Epigallocatechin-3-Gallate and Glatiramer Acetate Alters Expression of Heme-Oxygenase-1. PLoS ONE, 2015, 10, e0130251.	1.1	18
60	Subjective and objective assessment of physical activity in multiple sclerosis and their relation to health-related quality of life. BMC Neurology, 2017, 17, 10.	0.8	18
61	Association Between Fatigue and Motor Exertion in Patients With Multiple Sclerosis—a Prospective Study. Frontiers in Neurology, 2020, 11, 208.	1.1	18
62	Anti-MOG antibody–associated disorders: differences in clinical profiles and prognosis in Japan and Germany. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 377-383.	0.9	18
63	Multifrequency magnetic resonance elastography of the brain reveals tissue degeneration in neuromyelitis optica spectrum disorder. European Radiology, 2017, 27, 2206-2215.	2.3	16
64	Satralizumab in the treatment of neuromyelitis optica spectrum disorder. Neurodegenerative Disease Management, 2021, 11, 49-59.	1.2	16
65	Epigallocatechin Gallate in Relapsing-Remitting Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	3.1	16
66	C3 and C4 complement levels in AQP4-IgG-positive NMOSD and in MOGAD. Journal of Neuroimmunology, 2021, 360, 577699.	1.1	16
67	Synapsin-antibodies in psychiatric and neurological disorders: Prevalence and clinical findings. Brain, Behavior, and Immunity, 2017, 66, 125-134.	2.0	15
68	Temporal visual resolution and disease severity in MS. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e492.	3.1	15
69	Imaging markers of disability in aquaporin-4 immunoglobulin G seropositive neuromyelitis optica: a graph theory study. Brain Communications, 2019, 1, fcz026.	1.5	15
70	Quantitative 7T MRI does not detect occult brain damage in neuromyelitis optica. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e541.	3.1	15
71	Current and emerging biologics for the treatment of neuromyelitis optica spectrum disorders. Expert Opinion on Biological Therapy, 2020, 20, 1061-1072.	1.4	15
72	Vitamin D and Disease Severity in Multiple Sclerosis—Baseline Data From the Randomized Controlled Trial (EVIDIMS). Frontiers in Neurology, 2020, 11, 129.	1.1	15

JUDITH BELLMANN-STROBL

#	Article	IF	CITATIONS
73	Association of a Marker of <i>N</i> -Acetylglucosamine With Progressive Multiple Sclerosis and Neurodegeneration. JAMA Neurology, 2021, 78, 842.	4.5	15
74	MRI Markers and Functional Performance in Patients With CIS and MS: A Cross-Sectional Study. Frontiers in Neurology, 2018, 9, 718.	1.1	14
75	7 Tesla MRI of Balo's concentric sclerosis versus multiple sclerosis lesions. Annals of Clinical and Translational Neurology, 2018, 5, 900-912.	1.7	14
76	Emerging drugs for the treatment of neuromyelitis optica. Expert Opinion on Emerging Drugs, 2020, 25, 285-297.	1.0	14
77	Ventral posterior nucleus volume is associated with neuropathic pain intensity in neuromyelitis optica spectrum disorders. Multiple Sclerosis and Related Disorders, 2020, 46, 102579.	0.9	14
78	Differences in Advanced Magnetic Resonance Imaging in MOG-IgG and AQP4-IgG Seropositive Neuromyelitis Optica Spectrum Disorders: A Comparative Study. Frontiers in Neurology, 2020, 11, 499910.	1.1	14
79	Foveal changes in aquaporinâ€4 antibody seropositive neuromyelitis optica spectrum disorder are independent of optic neuritis and not overtly progressive. European Journal of Neurology, 2021, 28, 2280-2293.	1.7	14
80	SIGLEC1 (CD169): a marker of active neuroinflammation in the brain but not in the blood of multiple sclerosis patients. Scientific Reports, 2021, 11, 10299.	1.6	14
81	Costs and Health-Related Quality of Life in Patients With NMO Spectrum Disorders and MOG-Antibody–Associated Disease. Neurology, 2022, 98, .	1.5	14
82	Are there Epstein–Barr virus seronegative patients with multiple sclerosis?. Multiple Sclerosis Journal, 2013, 19, 1242-1243.	1.4	13
83	MRI-Based Methods for Spinal Cord Atrophy Evaluation: A Comparison of Cervical Cord Cross-Sectional Area, Cervical Cord Volume, and Full Spinal Cord Volume in Patients with Aquaporin-4 Antibody Seropositive Neuromyelitis Optica Spectrum Disorders. American Journal of Neuroradiology, 2018, 39, 1362-1368.	1.2	13
84	Transient enlargement of brain ventricles during relapsing-remitting multiple sclerosis and experimental autoimmune encephalomyelitis. JCI Insight, 2020, 5, .	2.3	13
85	Effects of Deep Repetitive Transcranial Magnetic Stimulation on Brain-Derived Neurotrophic Factor Serum Concentration in Healthy Volunteers. Neuropsychobiology, 2014, 69, 112-119.	0.9	12
86	Epigallocatechin Gallate in Progressive MS. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	3.1	12
87	Longitudinal analysis of T1w/T2w ratio in patients with multiple sclerosis from first clinical presentation. Multiple Sclerosis Journal, 2021, 27, 2180-2190.	1.4	12
88	Fine specificity of the antibody response to Epstein-Barr nuclear antigen-2 and other Epstein-Barr virus proteins in patients with clinically isolated syndrome: A peptide microarray-based case-control study. Journal of Neuroimmunology, 2016, 297, 56-62.	1.1	11
89	Pain, depression, and quality of life in adults with MOGâ€antibody–associated disease. European Journal of Neurology, 2021, 28, 1645-1658.	1.7	11
90	Blunted neural and psychological stress processing predicts future grey matter atrophy in multiple sclerosis. Neurobiology of Stress, 2020, 13, 100244.	1.9	10

#	Article	IF	CITATIONS
91	Fingolimod after a first unilateral episode of acute optic neuritis (MOVING) – preliminary results from a randomized, rater-blind, active-controlled, phase 2 trial. BMC Neurology, 2020, 20, 75.	0.8	10
92	Analysis of Lymphocytic DNA Damage in Early Multiple Sclerosis by Automated Gamma-H2AX and 53BP1 Foci Detection: A Case Control Study. PLoS ONE, 2016, 11, e0147968.	1.1	9
93	Neuromyelitis optica does not impact periventricular venous density versus healthy controls: a 7.0ÂTesla MRI clinical study. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2016, 29, 535-541.	1.1	9
94	Visual system damage and network maladaptation are associated with cognitive performance in neuromyelitis optica spectrum disorders Multiple Sclerosis and Related Disorders, 2020, 45, 102406.	0.9	9
95	Optic chiasm measurements may be useful markers of anterior optic pathway degeneration in neuromyelitis optica spectrum disorders. European Radiology, 2020, 30, 5048-5058.	2.3	9
96	Lateral geniculate nucleus volume changes after optic neuritis in neuromyelitis optica: A longitudinal study. NeuroImage: Clinical, 2021, 30, 102608.	1.4	9
97	Retinal Thickness Analysis in Progressive Multiple Sclerosis Patients Treated With Epigallocatechin Gallate: Optical Coherence Tomography Results From the SUPREMES Study. Frontiers in Neurology, 2021, 12, 615790.	1.1	7
98	Neural Processes of Psychological Stress and Relaxation Predict the Future Evolution of Quality of Life in Multiple Sclerosis. Frontiers in Neurology, 2021, 12, 753107.	1.1	7
99	Central stress processing, T-cell responsivity to stress hormones and disease severity in multiple sclerosis. Brain Communications, 2022, 4, fcac086.	1.5	7
100	Disease Modification in Multiple Sclerosis by Flupirtine—Results of a Randomized Placebo Controlled Phase II Trial. Frontiers in Neurology, 2018, 9, 842.	1.1	6
101	AQP4-IgC autoimmunity in Japan and Germany: Differences in clinical profiles and prognosis in seropositive neuromyelitis optica spectrum disorders. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2021, 7, 205521732110068.	0.5	6
102	Fingolimod Therapy in Multiple Sclerosis Leads to the Enrichment of a Subpopulation of Aged NK Cells. Neurotherapeutics, 2021, 18, 1783-1797.	2.1	6
103	Afferent Visual Pathway Affection in Patients with PMP22 Deletion-Related Hereditary Neuropathy with Liability to Pressure Palsies. PLoS ONE, 2016, 11, e0164617.	1.1	6
104	Immune signature of multiple sclerosis-associated depression. Brain, Behavior, and Immunity, 2022, 100, 174-182.	2.0	6
105	Alterations of NK Cell Phenotype During Pregnancy in Multiple Sclerosis. Frontiers in Immunology, 0, 13, .	2.2	6
106	Prefrontal-amygdala emotion regulation and depression in multiple sclerosis. Brain Communications, 2022, 4, .	1.5	5
107	Neural mechanisms of perceptual decision-making and their link to neuropsychiatric symptoms in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2019, 33, 139-145.	0.9	4
108	Altered Coupling of Psychological Relaxation and Regional Volume of Brain Reward Areas in Multiple Sclerosis. Frontiers in Neurology, 2020, 11, 568850.	1.1	3

#	Article	IF	CITATIONS
109	Effect of vitamin D supplementation on Nâ€glycan branching and cellular immunophenotypes in MS. Annals of Clinical and Translational Neurology, 2020, 7, 1628-1641.	1.7	3
110	Impaired motion perception is associated with functional and structural visual pathway damage in multiple sclerosis and neuromyelitis optica spectrum disorders. Multiple Sclerosis Journal, 2022, 28, 757-767.	1.4	3
111	Higher-resolution MR elastography reveals early mechanical signatures of neuroinflammation in patients with clinically isolated syndrome. Journal of Magnetic Resonance Imaging, 2016, 44, spcone-spcone.	1.9	2
112	The effectiveness of acupuncture and mindfulness-based stress reduction (MBSR) for patients with multiple sclerosis associated fatigue – A study protocol and its rationale for a randomized controlled trial. European Journal of Integrative Medicine, 2018, 20, 6-15.	0.8	2
113	Inebilizumab in AQP4-Ab-positive neuromyelitis optica spectrum disorder. Drugs of Today, 2021, 57, 321.	0.7	2
114	Emotional experience in patients with clinically isolated syndrome and early multiple sclerosis. European Journal of Neurology, 2020, 27, 1537-1545.	1.7	1
115	Longitudinal analysis of primary and secondary factors related to fatigue in multiple sclerosis. Acta Neurologica Belgica, 2021, 121, 271-274.	0.5	1
116	Iridodonesis as a cause of recurrent vertigo. Neurology, 2015, 85, 1353-1353.	1.5	0