Joao Da Providencia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8433044/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Some aspects of short-range correlations in nuclei. Annals of Physics, 1964, 30, 95-118.	2.8	102
2	Multi-quark interactions with a globally stable vacuum. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 634, 48-54.	4.1	72
3	Effects of eight-quark interactions on the hadronic vacuum and mass spectra of light mesons. Annals of Physics, 2007, 322, 2021-2054.	2.8	56
4	Stellar matter with a strong magnetic field within density-dependent relativistic models. Journal of Physics G: Nuclear and Particle Physics, 2008, 35, 125201.	3.6	56
5	Dynamical chiral symmetry breaking by a magnetic field and multi-quark interactions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2007, 650, 262-267.	4.1	34
6	Time-dependent Hartree-Fock formalism and the excitations of the Dirac sea in the Nambu–Jona-Lasinio model. Physical Review D, 1987, 36, 1882-1896.	4.7	32
7	Lowering the critical temperature with eight-quark interactions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2007, 646, 91-94.	4.1	31
8	Non-Hermitian Hamiltonians with Real Spectrum in Quantum Mechanics. Brazilian Journal of Physics, 2011, 41, 78-85.	1.4	31
9	Inequalities for quantum relative entropy. Linear Algebra and Its Applications, 2005, 401, 159-172.	0.9	29
10	A solvable model of boson condensation. Nuclear Physics A, 1977, 282, 518-532.	1.5	28
11	Corrections to the gaussian overlap approximation: A new boson expansion. Nuclear Physics A, 1971, 170, 129-140.	1.5	24
12	Cluster expansion of operator averages for systems of many particles. Nuclear Physics (journal), 1963, 46, 401-412.	1.9	21
13	Collective modes in hot and dense nuclear matter. Physical Review C, 1993, 47, 200-209.	2.9	21
14	On Generalized Numerical Ranges of Operators on an Indefinite Inner Product Space. Linear and Multilinear Algebra, 2004, 52, 203-233.	1.0	21
15	Inverse problems for pseudo-Jacobi matrices: existence and uniqueness results. Inverse Problems, 2011, 27, 025005.	2.0	21
16	Theorem for Energy-Weighted Averages of Spectroscopic Factors. Physical Review Letters, 1971, 27, 1069-1071.	7.8	20
17	Matrix inequalities in statistical mechanics. Linear Algebra and Its Applications, 2004, 376, 265-273.	0.9	20
18	Exact solutions for the LMG model Hamiltonian based on the Bethe ansatz. Nuclear Physics B, 2006, 737, 337-350.	2.5	20

2

#	Article	IF	CITATIONS
19	Sum Rules, Random-Phase-Approximation, and Constrained Self-Consistent Fields. Physical Review C, 1973, 7, 2281-2293.	2.9	19
20	Perturbation theory in nuclear matter with regular but velocity dependent interactions. Nuclear Physics (journal), 1963, 40, 321-328.	1.9	18
21	Instanton picture of the spin tunnelling in the Lipkin - Meshkov - Glick model. Journal of Physics A, 1997, 30, 5633-5643.	1.6	18
22	Variational description of the interplay between first sound and zero sound in finite nuclei. Il Nuovo Cimento A, 1985, 87, 248-259.	0.2	17
23	Mesonic excitations in the Nambu-Jona-Lasinio quark-antiquark continuum. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1990, 241, 1-6.	4.1	17
24	On the geometry of numerical ranges in spaces with an indefinite inner product. Linear Algebra and Its Applications, 2005, 399, 17-34.	0.9	16
25	Spinodal instabilities and the distillation effect in nuclear matter under strong magnetic fields. Physical Review C, 2009, 79, .	2.9	16
26	Spontaneous magnetization in high-density quark matter. Progress of Theoretical and Experimental Physics, 2015, 2015, 103D01.	6.6	16
27	The q-deformed Moszkowski model: RPA modes. Journal of Physics A, 1993, 26, 895-904.	1.6	15
28	Inequalities for J-Hermitian matrices. Linear Algebra and Its Applications, 2005, 407, 125-139.	0.9	15
29	SPIN POLARIZATION IN HIGH DENSITY QUARK MATTER. International Journal of Modern Physics E, 2013, 22, 1350019.	1.0	15
30	Relativistic quantum field theory and the Hartree-Fock method. Nuclear Physics B, 1973, 57, 536-542.	2.5	14
31	On a conjecture of G. N. de Oliveira on determinants. Linear and Multilinear Algebra, 1987, 20, 167-170.	1.0	14
32	Nuclear Ground-State Correlations and Boson Expansions. Physical Review C, 1970, 1, 825-833.	2.9	13
33	Some remarks on a conjecture of de Oliveira. Linear Algebra and Its Applications, 1988, 102, 241-246.	0.9	13
34	Effect of the δ meson on the instabilities of nuclear matter under strong magnetic fields. Physical Review C, 2009, 80, .	2.9	13
35	Three-Body Clusters in Nuclear Matter. Physical Review C, 1972, 5, 53-59.	2.9	12
36	Magnetization of High Density Hadronic Fluid. Brazilian Journal of Physics, 2012, 42, 68-76.	1.4	12

#	Article	IF	CITATIONS
37	Spin polarization versus color-flavor locking in high-density quark matter. Progress of Theoretical and Experimental Physics, 2015, 2015, 13D02-0.	6.6	12
38	Spin-polarized versus chiral condensate in quark matter at finite temperature and density. Progress of Theoretical and Experimental Physics, 2016, 2016, 053D02.	6.6	12
39	The Hartree-Fock and Generator Coordinate Methods in field theory. The polaron problem. Annals of Physics, 1975, 91, 366-374.	2.8	11
40	Pion-nucleon resonances and the Peierls-Yoccoz projection. Physical Review D, 1978, 18, 4208-4212.	4.7	11
41	Landau damping in infinite nuclear matter. Nuclear Physics A, 1989, 500, 301-307.	1.5	11
42	Mean-field generation of the classical g-deformation of su(3). Journal of Physics A, 1993, 26, 5845-5849.	1.6	11
43	Stability of relativistic Hartree states. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1989, 226, 207-212.	4.1	10
44	The validity of the Marcus-de Oliveira conjecture for essentially Hermitian matrices. Linear Algebra and Its Applications, 1994, 197-198, 411-427.	0.9	10
45	Short range correlations in relativistic nuclear matter models. Physical Review C, 2006, 73, .	2.9	10
46	An inverse eigenvalue problem for periodic Jacobi matrices in Minkowski spaces. Linear Algebra and Its Applications, 2011, 435, 2033-2045.	0.9	10
47	Mathematical Aspects of Quantum Systems with a Pseudo-Hermitian Hamiltonian. Brazilian Journal of Physics, 2016, 46, 152-156.	1.4	10
48	Investigations in the problem of pion condensation using generator co-ordinate methods. Nuclear Physics A, 1981, 370, 445-467.	1.5	9
49	Van Kampen waves in extended fermi systems and the Random Phase Approximation. Physica A: Statistical Mechanics and Its Applications, 1987, 146, 282-294.	2.6	9
50	Fluid-dynamical approach to collective modes in metal clusters. Physical Review B, 1994, 49, 2086-2098.	3.2	9
51	Aspects of short-range correlations in a relativistic model. Physical Review C, 2005, 71, .	2.9	9
52	First-Order Quark-Hadron Phase-Transition in a NJL-Type Model for Nuclear and Quark Matter: The Case of Symmetric Nuclear Matter Progress of Theoretical Physics, 2010, 123, 1013-1028.	2.0	9
53	The numerical range of banded biperiodic Toeplitz operators. Journal of Mathematical Analysis and Applications, 2013, 398, 189-197.	1.0	9
54	Quark–hadron phase transition in an extended Nambu–Jona-Lasinio model with scalar–vector interaction: Finite temperature and baryon chemical potential case. Progress of Theoretical and Experimental Physics, 2013, 2013, .	6.6	9

#	Article	IF	CITATIONS
55	Spin polarization and color superconductivity in the Nambu–Jona-Lasinio model at finite temperature. Physical Review D, 2017, 95, .	4.7	9
56	Matrices satisfying a conjecture of G.N. de Oliveira on determinants. Linear Algebra and Its Applications, 1986, 78, 187-198.	0.9	8
57	Relativistic Vlasov approach to normal modes of nuclear matter. Physical Review C, 1989, 40, 2377-2382.	2.9	8
58	Time dependent Hartree-Fock approach to the bosonic excitations of the Nambu-Jona-Lasinio model in the continuum. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1990, 237, 147-152.	4.1	8
59	The Lipkin model. Beyond mean field with generalized coherent states. Journal of Physics A, 2003, 36, 10361-10372.	1.6	8
60	The Buck–Sukumar model described in terms of <i>su</i> (2) ⊗ <i>su</i> (1, 1) coherent states. Journal of Physics A: Mathematical and Theoretical, 2007, 40, 12153-12160.	2.1	8
61	Spontaneous magnetization under a pseudovector interaction between quarks in high density quark matter. International Journal of Modern Physics E, 2018, 27, 1850028.	1.0	8
62	Remark on the relation between the generator-coordinate method and the random-phase approximation. Nuclear Physics A, 1970, 157, 358-362.	1.5	7
63	The Hartree-Fock and the generator coordinate methods in field theory:. Nuclear Physics A, 1977, 290, 435-444.	1.5	7
64	Thermal boson expansion for the Heisenberg ferromagnet. Physica A: Statistical Mechanics and Its Applications, 1986, 137, 196-208.	2.6	7
65	The numerical range and decomposable numerical range of matrices. Linear and Multilinear Algebra, 1991, 29, 195-205.	1.0	7
66	Three-level Lipkin model in the context of thesuq(3) algebra. Physical Review A, 1995, 52, 92-100.	2.5	7
67	J-orthostochastic matrices of size 3×3 and numerical ranges of Krein space operators. Linear Algebra and Its Applications, 2005, 407, 211-232.	0.9	7
68	Extended supersymmetric σ-model based on the Lie algebra of the fermion operators. Nuclear Physics B, 2008, 802, 121-145.	2.5	7
69	Inverse spectral problems for structured pseudo-symmetric matrices. Linear Algebra and Its Applications, 2013, 438, 4062-4074.	0.9	7
70	On the foundation of the VMI models for the ground state collective modes of doubly even nuclei. Nuclear Physics A, 1972, 182, 174-182.	1.5	6
71	A classical relativistic approach to the nucleation process. Journal of Physics G: Nuclear and Particle Physics, 1990, 16, 649-656.	3.6	6
72	Temperature dependence of bifurcation of equilibria in the SU(2) Lipkin model. Journal of Physics A, 1994, 27, 697-713.	1.6	6

#	Article	IF	CITATIONS
73	The J-numerical range of a J-Hermitian matrix and related inequalities. Linear Algebra and Its Applications, 2008, 428, 2995-3014.	0.9	6
74	An algorithm for constructing a pseudoâ€Jacobi matrix from given spectral data. Numerical Linear Algebra With Applications, 2013, 20, 185-197.	1.6	6
75	QMC approach based on the Bogoliubov independent quark model of the nucleon. International Journal of Modern Physics E, 2016, 25, 1650007.	1.0	6
76	On the connection between the generator coordinate method and boson expansions for odd-particle systems. Nuclear Physics A, 1974, 224, 262-268.	1.5	5
77	A variational approach to pion scattering on the cloudy bag. Nuclear Physics A, 1985, 436, 733-755.	1.5	5
78	Variational formulation of the Vlasov equation. Journal of Physics A, 1987, 20, 3877-3886.	1.6	5
79	OnC-det spectral andC-det-convex matrices. Linear and Multilinear Algebra, 1988, 23, 343-351.	1.0	5
80	Product of diagonal elements of matrices. Linear Algebra and Its Applications, 1993, 178, 185-200.	0.9	5
81	Collective isospin excitations in nuclear matter droplets. Physical Review C, 1994, 50, 2800-2808.	2.9	5
82	The q-deformed Moszkowski model: high-spin states. Journal of Physics G: Nuclear and Particle Physics, 1994, 20, 1209-1216.	3.6	5
83	Nuclear phenomena derived from quark-gluon strings. Physical Review C, 2005, 71, .	2.9	5
84	Color-symmetric superconductivity in a phenomenological QCD model. European Physical Journal A, 2009, 41, 355-360.	2.5	5
85	Interplay between spin polarization and color superconductivity in high density quark matter. Progress of Theoretical and Experimental Physics, 2013, 2013, .	6.6	5
86	Hybrid stars from the NJL model with a tensor interaction. Physical Review D, 2018, 98, .	4.7	5
87	Note on the applicability of the Peierls-Yoccoz method. Nuclear Physics A, 1977, 284, 420-424.	1.5	4
88	The generator coordinate method and the electron gas. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1978, 94, 152-168.	0.9	4
89	Classical microscopic theory of mixed states. Nuclear Physics A, 1990, 514, 461-470.	1.5	4
90	Finite-temperature dynamics of the chaotic maser model. Journal of Physics A, 1992, 25, 2243-2252.	1.6	4

#	Article	IF	CITATIONS
91	The q-deformed Moszkowski model: RPA modes. Journal of Physics A, 1993, 26, 5185-5185.	1.6	4
92	Numerical ranges of unbounded operators arising in quantum physics. Linear Algebra and Its Applications, 2004, 381, 259-279.	0.9	4
93	Random phase approximation for the 1D anti-ferromagnetic Heisenberg model. Journal of Physics Condensed Matter, 2006, 18, 10249-10258.	1.8	4
94	The Lipkin Model in Many-Fermion System as an Example of the su(1,1) ⊗ su(1,1)-Algebraic Model. Progress of Theoretical Physics, 2006, 116, 87-105.	2.0	4
95	Tensor interaction and short range correlations in relativistic nuclear models. Physical Review C, 2007, 75, .	2.9	4
96	Exact solutions to a schematic nuclear quark model and colorless superconductivity. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 405202.	2.1	4
97	On a reverse Heinz–Kato–Furuta inequality. Linear Algebra and Its Applications, 2012, 437, 1892-1905.	0.9	4
98	Orbitals of the dipositronium. Chemical Physics Letters, 2014, 610-611, 167-172.	2.6	4
99	Exact canonically conjugate momenta to quadrupole-type collective coordinates and derivation of nuclear quadrupole-type collective Hamiltonian. Nuclear Physics A, 2014, 923, 51-88.	1.5	4
100	On dipositronium and molecular hydrogen: similarities and differences. European Physical Journal D, 2015, 69, 1.	1.3	4
101	Spin polarization in high density quark matter under a strong external magnetic field. International Journal of Modern Physics E, 2016, 25, 1650106.	1.0	4
102	The EMM and the Spectral Analysis of a Non Self-adjoint Hamiltonian on an Infinite Dimensional Hilbert Space. Springer Proceedings in Physics, 2016, , 157-166.	0.2	4
103	Non-self-adjoint operators with real spectra and extensions of quantum mechanics. Journal of Mathematical Physics, 2019, 60, .	1.1	4
104	Toward non-Hermitian quantum statistical thermodynamics. Journal of Mathematical Physics, 2020, 61,	1.1	4
105	The Numerical Range of 2-Dimensional Krein Space Operators. Canadian Mathematical Bulletin, 2008, 51, 86-99.	0.5	4
106	Three-Body Clusters in Nuclear Matter. Physical Review C, 1972, 6, 1455-1457.	2.9	3
107	On the boundary of theC-numerical range of a normal matrix. Linear and Multilinear Algebra, 1988, 23, 145-157.	1.0	3
108	A note on thermal bosons. Nuclear Physics A, 1990, 516, 53-61.	1.5	3

Joao Da Providencia

#	Article	IF	CITATIONS
109	Thermal linear response of the chaotic maser model. Journal of Physics A, 1993, 26, 581-589.	1.6	3
110	Some Geometrical Properties of thec-Numerical Range of a Normal Matrix. Linear and Multilinear Algebra, 1994, 37, 83-92.	1.0	3
111	Relativistic Thomas-Fermi description of collective modes in droplets of nuclear matter. Physical Review C, 1996, 54, 2525-2537.	2.9	3
112	Surface modes in metal clusters and cavities. Journal of Physics Condensed Matter, 1997, 9, 2931-2946.	1.8	3
113	Finite Temperature SU(2) LMG Model: Mean-Field Versus Exact Calculation. Modern Physics Letters A, 1997, 12, 2985-2992.	1.2	3
114	Resonating mean-field theoretical approach to the Nambu–Jona-Lasinio model. Physical Review C, 1999, 60, .	2.9	3
115	Resonating mean-field theoretical description of and mesons by the Nambu–Jona-Lasinio model. Nuclear Physics A, 2001, 688, 882-904.	1.5	3
116	Boson Realization of the su(3)-Algebra. II: Holstein-Primakoff Representation for the Lipkin Model Progress of Theoretical Physics, 2006, 115, 155-164.	2.0	3
117	Indefinite numerical range of 3 × 3 matrices. Czechoslovak Mathematical Journal, 2009, 59, 221-239. Analogs of Cauchy–Poincaré and Fanậ€"Pall interlacing theorems for complimath	0.3	3
118	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mrow><mml:mi>J</mml:mi></mml:mrow> -Hermitian and <mml:math <br="" altimg="si2.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mrow><mml:mi>J</mml:mi></mml:mrow></mml:math> -normal matrices.	0.9	3
119	Linear Algebra and Its Applications, 2010, 433, 80-90. Beyond the Schwinger boson representation of the su(2)-algebra. Progress of Theoretical and Experimental Physics, 2015, 2015, .	6.6	3
120	A possible framework of the Lipkin model obeying the SU(n) algebra in arbitrary fermion number. I: The SU(2) algebras extended from the conventional fermion pair and determination of the minimum weight states. Progress of Theoretical and Experimental Physics, 2016, 2016, 083D03.	6.6	3
121	Generalized Rayleigh quotients and generating vectors. Linear and Multilinear Algebra, 2017, 65, 1-23.	1.0	3
122	A quantum system with a non-Hermitian Hamiltonian. Journal of Mathematical Physics, 2020, 61, 082106.	1.1	3
123	Spin polarizations under a pseudovector interaction between quarks with the Kobayashi–Maskawa–'t Hooft term in high density quark matter. International Journal of Modern Physics E, 2020, 29, 2050003.	1.0	3
124	Remark on the Villars theory of nuclear collective rotation and its relation to the variable moment of inertia model of Mariscotti et al Nuclear Physics A, 1970, 158, 161-165.	1.5	2
125	On the determinant of certain strictly dissipative matrices. Linear Algebra and Its Applications, 1986, 83, 117-128.	0.9	2
126	Damping of the Giant Resonances in a Fluid-Dynamical Model. Europhysics Letters, 1987, 4, 789-792.	2.0	2

#	Article	IF	CITATIONS
127	Vlasov description of the collision between two slabs. Journal of Physics G: Nuclear Physics, 1988, 14, 205-210.	0.8	2
128	The cranked Moszkowski model at finite temperature. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1990, 236, 375-380.	4.1	2
129	Cranked Moszkowski model with temperature. Physical Review C, 1992, 46, 2098-2101.	2.9	2
130	Classical q-deformation of su(2) and Os(1). Journal of Physics A, 1993, 26, 5835-5844.	1.6	2
131	Perturbative description of the temperature dependence of the resonance width. Physical Review C, 1994, 50, 1720-1722.	2.9	2
132	Fluid-dynamical model of hot nuclei. Nuclear Physics A, 1995, 582, 23-60.	1.5	2
133	Finite Temperature Effects in the NonintegrableSU(3) Lipkin Model. Annals of Physics, 1998, 262, 1-46.	2.8	2
134	Time-Evolution of the Coherent and the Squeezed States of Many-Body Systems Based on the Basic Idea of the Boson Mapping and the TDHF Method. Progress of Theoretical Physics Supplement, 2001, 141, 113-178.	0.1	2
135	EOS OF NUCLEAR MATTER WITHIN A GENERALISED NJL MODEL. International Journal of Modern Physics B, 2003, 17, 5209-5213.	2.0	2
136	The RPA equation embedded into infinite-dimensional Fock spaceFâ^ž. Journal of Physics A, 2005, 38, 6759-6775.	1.6	2
137	EFFICIENT DESCRIPTION FOR π AND σ MESONS BY RESONATING MEAN-FIELD APPROXIMATION TO TWO-FLAVOR NAMBU-JONA-LASINIO MODEL. International Journal of Modern Physics E, 2006, 15, 1087-1114.	1.0	2
138	On the corners of certain determinantal ranges. Linear Algebra and Its Applications, 2007, 426, 96-108.	0.9	2
139	Product of diagonal entries of the unitary orbit of a 3-by-3 normal matrix. Linear Algebra and Its Applications, 2008, 429, 698-715.	0.9	2
140	Exact solutions to a schematic nuclear quark model and colorless superconductivity. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 089802.	2.1	2
141	Note on Many-Quark Model with su(4) Algebraic Structure. Progress of Theoretical Physics, 2009, 122, 693-711.	2.0	2
142	The boundary of the Krein space tracial numerical range, an algebraic approach and a numerical algorithm. Annali Di Matematica Pura Ed Applicata, 2010, 189, 539-551.	1.0	2
143	Trace inequalities for logarithms and powers of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:mi>J</mml:mi></mml:mrow>-Hermitian matrices. Linear Algebra and Its Applications. 2010. 432. 3172-3182.</mml:math 	0.9	2
144	On the eigenvalues of principal submatrices of J-normal matrices. Linear Algebra and Its Applications, 2011, 435, 3101-3114.	0.9	2

#	Article	IF	CITATIONS
145	A NEW DESCRIPTION OF MOTION OF THE FERMIONIC <i>SO</i> (2 <i>N</i> +2) TOP IN THE CLASSICAL LIMIT UNDER THE QUASI-ANTICOMMUTATION RELATION APPROXIMATION. International Journal of Modern Physics A, 2012, 27, 1250054.	1.5	2
146	Indefinite higher-rank numerical ranges. Linear and Multilinear Algebra, 2012, 60, 1009-1026.	1.0	2
147	Computing the numerical range of Krein space operators. Open Mathematics, 2014, 13, .	1.0	2
148	Exact canonically conjugate momenta approach to a one-dimensional neutron–proton system, I. International Journal of Modern Physics E, 2015, 24, 1550045.	1.0	2
149	New boson realization of the Lipkin model obeying the su(2)-algebra. Progress of Theoretical and Experimental Physics, 2015, 2015, 63D01-0.	6.6	2
150	Description of collective motion in two-dimensional nuclei; Tomonaga's method revisited. Nuclear Physics A, 2015, 935, 1-17.	1.5	2
151	\$rac{{m SO}(2N)}{U(N)}\$ Riccati–Hartree–Bogoliubov equation based on the SO (2N) Lie algebra of the fermion operators. International Journal of Geometric Methods in Modern Physics, 2015, 12, 1550035.	2.0	2
152	A possible framework of the Lipkin model obeying the SU(n) algebra in arbitrary fermion number. II: Two subalgebras in the SU(n) Lipkin model and an approach to the construction of a linearly independent basis. Progress of Theoretical and Experimental Physics, 2016, 2016, 083D04.	6.6	2
153	Hyperonic stars within the Bogoliubov quark meson model for nuclear matter. International Journal of Modern Physics E, 2019, 28, 1950034.	1.0	2
154	Binding of muonated hydrogen molecules and Born–Oppenheimer approximation revisited. Canadian Journal of Physics, 2020, 98, 379-384.	1.1	2
155	On Kippenhahn curves and higher-rank numerical ranges of some matrices. Linear Algebra and Its Applications, 2021, 629, 246-257.	0.9	2
156	Non-Hermitian Quantum Mechanics of Bosonic Operators. Operator Theory: Advances and Applications, 2018, , 65-78.	0.2	2
157	Krein spaces numerical ranges and their computer generation. Electronic Journal of Linear Algebra, 0, 17, .	0.6	2
158	Hybrid stars from a three-flavor NJL model with two kinds of tensor condensates. International Journal of Modern Physics E, 2020, 29, 2050093.	1.0	2
159	Description of excited states in systems with short-range correlations. Nuclear Physics A, 1975, 242, 376-388.	1.5	1
160	Variational principles in quantum statistical mechanics. European Journal of Physics, 1987, 8, 12-17.	0.6	1
161	Application of the thermal boson expansion to the Heisenberg ferromagnets EuO and EuS. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1988, 147, 249-258.	0.9	1
162	Collective and intrinsic degrees of freedom in the Heisenberg ferromagnet. Journal of Physics A, 1989, 22, 703-715.	1.6	1

#	Article	IF	CITATIONS
163	Application of the thermal boson expansion to the Heisenberg antiferromagnet MnF2. Physica B: Condensed Matter, 1989, 160, 357-364.	2.7	1
164	The pion resonance in the linear chiral sigma model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1990, 248, 21-27.	4.1	1
165	Mean field generation of the classical q-deformation of su(2). Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 176, 403-408.	2.1	1
166	Semi-Classical Description of Dynamical Properties of Mesonic Excitations in the Nambu and Jona-Lasinio Model. Europhysics Letters, 1993, 21, 521-526.	2.0	1
167	Another proof of a conjecture of marcus on thec-numerical range. Linear and Multilinear Algebra, 1996, 41, 35-40.	1.0	1
168	Note on Boson Expansion and Boson Coherent State for the su(2)-Spin System. Progress of Theoretical Physics, 1996, 95, 79-96.	2.0	1
169	Finite temperatureSU(3) LMG model: mean-field versus exact calculation. Journal of Physics G: Nuclear and Particle Physics, 1996, 22, 351-360.	3.6	1
170	The effect of surface diffusibility on the collective modes of metal clusters. Journal of Physics Condensed Matter, 1999, 11, 8459-8476.	1.8	1
171	Spin modes in polarized3He clusters. Physical Review B, 2000, 62, 3968-3978.	3.2	1
172	Microscopic Theory of the Two-Dimensional Quantum Antiferromagnet in a Paramagnetic Phase. Annals of Physics, 2002, 298, 186-209.	2.8	1
173	Description of anharmonic effects with generalized coherent states. Journal of Physics A, 2004, 37, 769-779.	1.6	1
174	Boson Realization of the su(3)-Algebra. I: Schwinger Representation for the Lipkin Model Progress of Theoretical Physics, 2006, 115, 143-153.	2.0	1
175	The two-level pairing model in the Schwinger representation. Journal of Physics A, 2006, 39, 11193-11204.	1.6	1
176	Schwinger representation approach to the Lipkin model. Journal of Physics A, 2006, 39, 12457-12468.	1.6	1
177	Flat portions on the boundary of the indefinite numerical range of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:mn>3</mml:mn></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mr< td=""><td>nrow><td>ml:math></td></td></mml:mr<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math 	nrow> <td>ml:math></td>	ml:math>
178	The Bonn nuclear quark model revisited. Annals of Physics, 2009, 324, 1666-1675.	2.8	1
179	On the Courant–Fischer theory for Krein spaces. Linear Algebra and Its Applications, 2009, 430, 1867-1876	0.9	1
180	$\label{eq:anomaly-free} Supersymmetric \ rac\{\{ext\{SO\}\} \ eft(\ \{2N+2\} \ ight)\}\}\{\{ext\{U\}\} \ eft(\ \{N+1\}) \ Tj \ ETQq0 \ 0 \ 0 \ rgBT/BTQ \ 0 \ 0 \ 0 \ rgBT/BTQ \ 0 \ 0 \ 0 \ rgBT/BTQ \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $	Overlock 2 4.7	10 Tf 50 67 T 1

Physics, 2011, 2011, 1.

Joao Da Providencia

#	Article	IF	CITATIONS
181	PION CORRELATIONS IN NUCLEAR MATTER. International Journal of Modern Physics E, 2011, 20, 63-80.	1.0	1
182	Background of the su(2)-Algebraic Many-Fermion Models in the Boson Realization. Progress of Theoretical Physics, 2012, 127, 117-143.	2.0	1
183	Operator inequalities for J-contractions. Mathematical Inequalities and Applications, 2012, , 883-897.	0.2	1
184	Large a quasi-Jacobi form for J-normal matrices and inverse eigenvalue problems. Linear Algebra and Its Applications, 2012, 436, 1739-1753.	0.9	1
185	BCS Theory of Hadronic Matter at High Densities. Brazilian Journal of Physics, 2012, 42, 59-67.	1.4	1
186	A pseudo su(1,1)-algebraic deformation of the Cooper pair in the su(2)-algebraic many-fermion model. Progress of Theoretical and Experimental Physics, 2013, 2013, 103D04-103D04.	6.6	1
187	AN ATTEMPT AT A RESONATING MEAN-FIELD THEORETICAL DESCRIPTION OF THERMAL BEHAVIOR OF TWO-GAP SUPERCONDUCTIVITY. International Journal of Modern Physics B, 2013, 27, 1350079.	2.0	1
188	Thermal resonating Hartree–Bogoliubov theory based on the projection method. International Journal of Modern Physics B, 2014, 28, 1450131.	2.0	1
189	An inverse indefinite numerical range problem. Linear Algebra and Its Applications, 2015, 470, 200-215.	0.9	1
190	Velocity operator approach to quantum fluid dynamics in a three-dimensional neutron–proton system. International Journal of Modern Physics E, 2016, 25, 1650057.	1.0	1
191	Mean-field theory based on the Jacobi hsp ≔ semidirect sum hN⋊sp(2N,R)C algebra of boson operators. Journal of Mathematical Physics, 2019, 60, 081706.	1.1	1
192	A quantum system with a non-self-adjoint 2D-harmonic oscillator. Physica Scripta, 2019, 94, 095205.	2.5	1
193	Fermionic Model with a Non-Hermitian Hamiltonian. Brazilian Journal of Physics, 2020, 50, 143-152.	1.4	1
194	Maximum entropy principle and Landau free energy inequality. Linear and Multilinear Algebra, 2021, 69, 1020-1034.	1.0	1
195	Fields of Values of Linear Pencils and Spectral Inclusion Regions. Springer Proceedings in Mathematics and Statistics, 2017, , 165-179.	0.2	1
196	The Characteristic Polynomial of Linear Pencils of Small Size and the Numerical Range. Springer Proceedings in Mathematics and Statistics, 2017, , 181-197.	0.2	1
197	Remarks on the mean-field theory based on the SO(2N + 1) Lie algebra of the fermion operators. International Journal of Geometric Methods in Modern Physics, 2019, 16, 1950184.	2.0	1
198	Nonzero tensor condensates in cold quark matter within the three-flavor Nambu–Jona–Lasinio model with the Kobayashi–Maskawa–'t Hooft interaction. International Journal of Modern Physics E, 2020, 29, 2050036.	1.0	1

#	Article	IF	CITATIONS
199	On the relation between the double-projection method of peierls and thouless, and the Villars theory of the nuclear collective rotation. Nuclear Physics A, 1970, 145, 28-32.	1.5	0
200	Contribution of the Coherent Quasiboson-Approximation Modes to Ground-State Correlations. Physical Review C, 1970, 1, 411-413.	2.9	0
201	Generator Coordinate Method and Short Range Correlations. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1973, 28, 393-395.	1.5	0
202	The Ïfâ†'Ï€ï€ decay width in the linear sigma model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1991, 271, 21-26.	4.1	0
203	Collective excitations of infinite nuclear matter at finite temperature. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1992, 295, 25-27.	4.1	0
204	Two Contrastive Boson-Pair Coherent States in Deformed Boson Scheme. Progress of Theoretical Physics, 2002, 107, 1279-1284.	2.0	0
205	Anharmonic effects in large-amplitude vibrations of metal clusters. European Physical Journal D, 2002, 18, 319-326.	1.3	0
206	Electron-phonon coupling and anharmonic effects in metal clusters. Europhysics Letters, 2004, 67, 760-765.	2.0	0
207	The Heisenberg Antiferromagnet: – An Explicitly Rotational Invariant Formulation Progress of Theoretical Physics, 2004, 112, 383-397.	2.0	0
208	Deformed Boson Scheme Stressing Even-Odd Boson Number Difference. III: Parameter-Dependent Deformation Progress of Theoretical Physics, 2004, 111, 509-523.	2.0	0
209	Coupling Schemes for an n su(2) Spin System. Progress of Theoretical Physics, 2004, 112, 997-1012.	2.0	0
210	Gross-Pitaevski equation and resonances in Bose-Einstein condensates. Europhysics Letters, 2005, 69, 920-923.	2.0	0
211	Boson Realization of the su(3)-Algebra. III: Schwinger Representation for the Elliott Model. Progress of Theoretical Physics, 2006, 115, 547-559.	2.0	0
212	Boson Realization of the su(3)-Algebra. IV: Holstein-Primakoff Representation for the Elliott Model. Progress of Theoretical Physics, 2006, 115, 561-566.	2.0	0
213	A Note on the Two-Level Pairing Model Obeying the su(2) Â su(2)-Algebra: Re-formation in Terms of the su(1,1) Â su(1,1)-Algebra Progress of Theoretical Physics, 2006, 115, 759-764.	2.0	0
214	On Parametric Resonance in Quantum Many-Body System: Collective Motion and Quantum Fluctuation around It in Coupled Lipkin Model Progress of Theoretical Physics, 2006, 115, 129-141.	2.0	0
215	A New Boson Realization of the Two-Level Pairing Model in a Many-Fermion System and Its Classical Counterpart: The Role of the su(2) Â su(1,1)-Coherent State in the Schwinger Boson Representation for the su(2) Â su(2)-Algebra Progress of Theoretical Physics, 2006, 115, 739-757.	2.0	0
216	Classical and Quantal Descriptions of Small Amplitude Fluctuations around Equilibriums in the Two-Level Pairing Model. Progress of Theoretical Physics, 2007, 117, 835-851.	2.0	0

#	Article	IF	CITATIONS
217	Self-consistent-field method and Ï"-functional method on group manifold in soliton theory. II. Laurent coefficients of soliton solutions for slÌ,n and for suÌ,n. Journal of Mathematical Physics, 2007, 48, 053502.	1.1	0
218	A Refined Numerical Result on the First Excitation Energy in the Two-Level Pairing Model. Progress of Theoretical Physics, 2007, 117, 853-860.	2.0	0
219	Stable Multiquark Interactions. AIP Conference Proceedings, 2007, , .	0.4	0
220	An extension of Birkhoff's theorem with an application to determinants. Linear Algebra and Its Applications, 2007, 427, 130-137.	0.9	0
221	Many-Quark Model with su(4) Algebraic Structure: An Example of Analytically Soluble Many-Fermion System. Progress of Theoretical Physics, 2009, 121, 1237-1287.	2.0	0
222	Color symmetrical superconductivity in a schematic nuclear quark model. Europhysics Letters, 2010, 89, 42001.	2.0	0
223	On the Color-Singlet States in Many-Quark Model with the su(4)-Algebraic Structure. I. Progress of Theoretical Physics, 2011, 126, 115-134.	2.0	0
224	On the Color-Singlet States in Many-Quark Model with the su(4)-Algebraic Structure. II: Determination of Ground-State Energies Progress of Theoretical Physics, 2011, 126, 293-311.	2.0	0
225	Re-Formation of Many-Quark Model with the su(4)-Algebraic Structure in the Schwinger Boson Realization: –Reconsideration in the Original Fermion Space–. Progress of Theoretical Physics, 2012, 127, 751-768.	2.0	0
226	Color-Singlet Three-Quark States in the su(4)-Algebraic Many-Quark Model: –An Example of the su(4) Â su(4)-Model Progress of Theoretical Physics, 2012, 127, 769-779.	2.0	0
227	Tsallis entropies and matrix trace inequalities in quantum statistical mechanics. Journal of Mathematical Physics, 2012, 53, 103303.	1.1	0
228	THE 1D HEISENBERG ANTIFERROMAGNET MODEL BY THE VARIATION AFTER PROJECTION METHOD. International Journal of Modern Physics B, 2013, 27, 1350058.	2.0	0
229	Quark spin polarization in high density quark matter. EPJ Web of Conferences, 2014, 66, 04029.	0.3	0
230	The numerical range of banded 2-Toeplitz operators in spaces with an indefinite metric. Linear and Multilinear Algebra, 2014, 62, 659-673.	1.0	0
231	Krein space numerical ranges: compressions and dilations. Annals of Functional Analysis, 2014, 5, 36-50.	0.8	0
232	Products of Laurent operators and fields of values. Annals of Functional Analysis, 2016, 7, 552-563.	0.8	0
233	Modified non-Euclidean transformation on the SO(2N+2) U(N+1) Grassmannian and SO(2N + 1) random phase approximation for unified description of Bose and Fermi type collective excitations. International Journal of Geometric Methods in Modern Physics, 2016, 13, 1650043.	2.0	0
234	A possible quantum fluid-dynamical approach to vortex motion in nuclei. International Journal of Modern Physics E, 2017, 26, 1750020.	1.0	0

#	Article	IF	CITATIONS
235	A practical scheme for constructing the minimum-weight states of the su(n)-Lipkin model in arbitrary fermion number. Progress of Theoretical and Experimental Physics, 2017, 2017, .	6.6	0
236	Implications of losing Hermiticity in quantum mechanics. Linear Algebra and Its Applications, 2018, 542, 54-65.	0.9	0
237	Variational Description of Collective Isospin Modes in Heavy Nuclei. , 1995, , 187-193.		0
238	A Fiedler-type theorem for the determinant of J-positive matrices. Mathematical Inequalities and Applications, 2016, , 663-669.	0.2	0
239	Approximations for the von Neumann and Rényi entropies of graphs with circulant type Laplacians. Electronic Research Archive, 2022, 30, 1864-1880.	0.9	0