Iman Shabani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8432814/publications.pdf

Version: 2024-02-01

249298 325983 1,917 43 26 40 h-index citations g-index papers 43 43 43 3381 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhanced mechanical properties and electrical conductivity of Chitosan/Polyvinyl Alcohol electrospun nanofibers by incorporation of graphene nanoplatelets. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104975.	1.5	17
2	A hybrid oxygen-generating wound dressing based on chitosan thermosensitive hydrogel and decellularized amniotic membrane. Carbohydrate Polymers, 2022, 281, 119020.	5.1	21
3	Tailor-made conductive PANI-coated nanofibers for tissue engineering applications. Synthetic Metals, 2022, 286, 117049.	2.1	5
4	Microfluidic fabrication of berberine-loaded nanoparticles for cancer treatment applications. Journal of Drug Delivery Science and Technology, 2021, 61, 102134.	1.4	11
5	Enhancing biocompatibility of polyaniline-based scaffolds by using a bioactive dopant. Synthetic Metals, 2021, 271, 116642.	2.1	15
6	Self-Healing Polymers for Biomedical Applications. , 2021, , 74-74.		0
7	PLA electrospun nanofibers modified with polypyrrole-grafted gelatin as bioactive electroconductive scaffold. Polymer, 2021, 218, 123487.	1.8	32
8	Enhancing Cellular Infiltration on Fluffy Polyaniline-Based Electrospun Nanofibers. Frontiers in Bioengineering and Biotechnology, 2021, 9, 641371.	2.0	16
9	Synergistic effects of conductive PVA/PEDOT electrospun scaffolds and electrical stimulation for more effective neural tissue engineering. European Polymer Journal, 2020, 140, 110051.	2.6	57
10	<p>Nanofibrous Scaffolds Containing Hydroxyapatite and Microfluidic-Prepared Polyamidoamin/BMP-2 Plasmid Dendriplexes for Bone Tissue Engineering Applications</p> . International Journal of Nanomedicine, 2020, Volume 15, 2633-2646.	3.3	18
11	Microfluidic fabrication of alendronate-loaded chitosan nanoparticles for enhanced osteogenic differentiation of stem cells. Life Sciences, 2020, 254, 117768.	2.0	34
12	A Review on Modifications of Amniotic Membrane for Biomedical Applications. Frontiers in Bioengineering and Biotechnology, 2020, 8, 606982.	2.0	44
13	Surface mineralized hybrid nanofibrous scaffolds based on poly(<scp>l</scp> ″actide) and alginate enhances osteogenic differentiation of stem cells. Journal of Biomedical Materials Research - Part A, 2019, 107, 586-596.	2.1	17
14	L. inermis -loaded nanofibrous scaffolds for wound dressing applications. Tissue and Cell, 2018, 51, 32-38.	1.0	42
15	Nanostructured self-healing polymers and composites. , 2018, , 401-423.		1
16	Enhanced Cardiac Differentiation of Human Cardiovascular Disease Patient-Specific Induced Pluripotent Stem Cells by Applying Unidirectional Electrical Pulses Using Aligned Electroactive Nanofibrous Scaffolds. ACS Applied Materials & Diterfaces, 2017, 9, 6849-6864.	4.0	77
17	The synergistic effect of nano-hydroxyapatite and dexamethasone in the fibrous delivery system of gelatin and poly(l-lactide) on the osteogenesis of mesenchymal stem cells. International Journal of Pharmaceutics, 2016, 507, 1-11.	2.6	56
18	Polymer/metal nanocomposites for biomedical applications. Materials Science and Engineering C, 2016, 60, 195-203.	3.8	202

#	Article	IF	Citations
19	A Home-brew Real-time PCR Assay for Reliable Detection and Quantification of Mature miR-122. Applied Immunohistochemistry and Molecular Morphology, 2015, 23, 601-606.	0.6	18
20	Reactivity ratio determination of styrene and 2-ethylhexyl acrylate by least squares methods. International Journal of Plastics Technology, 2015, 19, 191-198.	2.9	0
21	Structural stability and sustained release of protein from a multilayer nanofiber/nanoparticle composite. International Journal of Biological Macromolecules, 2015, 75, 248-257.	3.6	39
22	EGF-loaded nanofibrous scaffold for skin tissue engineering applications. Fibers and Polymers, 2015, 16, 782-787.	1.1	26
23	PLGA/gelatin hybrid nanofibrous scaffolds encapsulating EGF for skin regeneration. Journal of Biomedical Materials Research - Part A, 2015, 103, 2225-2235.	2.1	107
24	Ion-Exchange Polymer Nanofibers for Enhanced Osteogenic Differentiation of Stem Cells and Ectopic Bone Formation. ACS Applied Materials & Samp; Interfaces, 2014, 6, 72-82.	4.0	30
25	Protein encapsulated in electrospun nanofibrous scaffolds for tissue engineering applications. Polymer International, 2013, 62, 1250-1256.	1.6	30
26	Function of Poly (lactic-co-glycolic acid) Nanofiber in Reduction of Adhesion Bands. Journal of Surgical Research, 2012, 172, e1-e9.	0.8	46
27	Cellular infiltration on nanofibrous scaffolds using a modified electrospinning technique. Biochemical and Biophysical Research Communications, 2012, 423, 50-54.	1.0	54
28	Combination of poly L-lactic acid nanofiber scaffold with omentum graft for bone healing in experimental defect in tibia of rabbits. Acta Cirurgica Brasileira, 2012, 27, 694-701.	0.3	5
29	Hepatic differentiation from human mesenchymal stem cells on a novel nanofiber scaffold. Cellular and Molecular Biology Letters, 2012, 17, 89-106.	2.7	54
30	Neural differentiation of mouse embryonic stem cells on conductive nanofiber scaffolds. Biotechnology Letters, 2012, 34, 1357-1365.	1,1	70
31	Effect of lowâ€frequency oxygen plasma on polysulfone membranes for CO ₂ /CH ₄ Separation. Journal of Applied Polymer Science, 2012, 124, E199.	1.3	16
32	Bladder tissue engineering using biocompatible nanofibrous electrospun constructs: feasibility and safety investigation. Urology Journal, 2012, 9, 410-9.	0.3	12
33	Enhanced Infiltration and Biomineralization of Stem Cells on Collagen-Grafted Three-Dimensional Nanofibers. Tissue Engineering - Part A, 2011, 17, 1209-1218.	1.6	49
34	Effective combination of aligned nanocomposite nanofibers and human unrestricted somatic stem cells for bone tissue engineering. Acta Pharmacologica Sinica, 2011, 32, 626-636.	2.8	49
35	Poly (& epsilon; -caprolactone) nanofibrous ring surrounding a polyvinyl alcohol hydrogel for the development of a biocompatible two-part artificial cornea. International Journal of Nanomedicine, 2011, 6, 1509.	3.3	34
36	The promotion of stemness and pluripotency following feeder-free culture of embryonic stem cells on collagen-grafted 3-dimensional nanofibrous scaffold. Biomaterials, 2011, 32, 7363-7374.	5.7	67

3

#	Article	IF	CITATION
37	Novel nanofiber-based triple-layer proton exchange membranes for fuel cell applications. Journal of Power Sources, 2011, 196, 4599-4603.	4.0	62
38	Nanofiber-based polyelectrolytes as novel membranes for fuel cell applications. Journal of Membrane Science, 2011, 368, 233-240.	4.1	128
39	Neurogenic differentiation of human conjunctiva mesenchymal stem cells on a nanofibrous scaffold. International Journal of Developmental Biology, 2010, 54, 1295-1300.	0.3	27
40	Accelerated Epidermal Regeneration and Improved Dermal Reconstruction Achieved by Polyethersulfone Nanofibers. Tissue Engineering - Part A, 2010, 16, 3527-3536.	1.6	72
41	Nanohydroxyapatite-Coated Electrospun Poly(<scp> </scp> -lactide) Nanofibers Enhance Osteogenic Differentiation of Stem Cells and Induce Ectopic Bone Formation. Biomacromolecules, 2010, 11, 3118-3125.	2.6	162
42	Using of leather fibers as an additive in elastomeric compounds: Its effect on curing behavior and physico-mechanical properties. Journal of Applied Polymer Science, 2009, 111, 1670-1675.	1.3	7
43	Improved infiltration of stem cells on electrospun nanofibers. Biochemical and Biophysical Research Communications, 2009, 382, 129-133.	1.0	88