Virgilio Valente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8432549/publications.pdf

Version: 2024-02-01

1306789 1058022 36 337 7 14 citations g-index h-index papers 37 37 37 441 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Practical Inductive Link Design for Biomedical Wireless Power Transfer: A Tutorial. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12, 1112-1130.	2.7	107
2	Bidirectional Bioelectronic Interfaces: System Design and Circuit Implications. IEEE Solid-State Circuits Magazine, 2020, 12, 30-46.	0.5	34
3	A Tripolar Current-Steering Stimulator ASIC for Field Shaping in Deep Brain Stimulation. IEEE Transactions on Biomedical Circuits and Systems, 2012, 6, 197-207.	2.7	32
4	Frequency Splitting Analysis and Compensation Method for Inductive Wireless Powering of Implantable Biosensors. Sensors, 2016, 16, 1229.	2.1	24
5	Wideband Fully-Programmable Dual-Mode CMOS Analogue Front-End for Electrical Impedance Spectroscopy. Sensors, 2016, 16, 1159.	2.1	20
6	A CMOS Smart Temperature and Humidity Sensor with Combined Readout. Sensors, 2014, 14, 17192-17211.	2.1	17
7	A High-Power CMOS Class-D Amplifier for Inductive-Link Medical Transmitters. IEEE Transactions on Power Electronics, 2015, 30, 4477-4488.	5.4	15
8	A Low-Power, Wireless, Capacitive Sensing Frontend Based on a Self-Oscillating Inductive Link. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 2645-2656.	3. 5	7
9	CMOS Image Sensor for Lateral Flow Immunoassay Readers. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65, 1405-1409.	2.2	7
10	Short-Range Quality-Factor Modulation (SQuirM) for Low Power High Speed Inductive Data Transfer. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 3254-3265.	3.5	7
11	Output stage of a current-steering multipolar and multisite deep brain stimulator. , 2013, , .		6
12	A 32-by-32 CMOS microelectrode array for capacitive biosensing and impedance spectroscopy. , 2017, , .		6
13	1.2-V Energy-Efficient Wireless CMOS Potentiostat for Amperometric Measurements. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 1700-1704.	2.2	6
14	Electric field focusing and shifting technique in deep brain stimulation using a dynamic tripolar current source. , 2010, , .		5
15	Towards a closed-loop transmitter system with integrated class-D amplifier for coupling-insensitive powering of implants. , 2012, , .		5
16	An Implantable Stimulator With Safety Sensors in Standard CMOS Process for Active Books. IEEE Sensors Journal, 2016, 16, 7161-7172.	2.4	5
17	A dedicated electrode driving ASIC for epidural spinal cord stimulation in rats. , 2013, , .		4
18	Single-pulse harmonic modulation for short range biomedical inductive data transfer. , 2017, , .		4

#	Article	IF	CITATIONS
19	Towards the development of phased array systems for deep brain stimulation. , 2008, , .		3
20	CMOS analog power meter and delay line for automatic efficiency optimization in medical power transmitters. , 2013, , .		3
21	Design of a wideband CMOS impedance spectroscopy ASIC analog front-end for multichannel biosensor interfaces., 2015, 2015, 885-8.		3
22	Design of a current-steering implantable stimulator with electric field shifting for deep brain stimulation. , 2010, , .		2
23	Efficiency optimization of class-D biomedical inductive wireless power transfer systems by means of frequency adjustment., 2015, 2015, 5473-6.		2
24	An implantable wireless multi-channel neural prosthesis for epidural stimulation. , $2016, \ldots$		2
25	An Energy-Efficient 1.2V 4-Channel Wireless CMOS Potentiostat for Amperometric Biosensors. , 2018, , .		2
26	A Wireless Power Transfer System for Biomedical Implants based on an isolated Class-E DC-DC Converter with Power Regulation Capability. , 2020, , .		2
27	Evolution of Biotelemetry in Medical Devices: From Radio Pills to mm-Scale Implants. IEEE Transactions on Biomedical Circuits and Systems, 2022, 16, 580-599.	2.7	2
28	Output stage of a dynamic current steering deep brain stimulator. , 2015, , .		1
29	Dual-mode CMOS analog front-end (AFE) for electrical impedance spectroscopy (EIS) systems. , 2016, 2016, 1914-1917.		1
30	A Power-Efficient and Safe Neural Stimulator Using Ultra-High Frequency Current Pulses for Nerve Conduction Block. , 2019, , .		1
31	Achieving electric field steering in deep brain stimulation. , 2011, , .		O
32	A 1-Wire& $\#$ x00AE; communication interface between a control hub and locally powered epidural stimulators., 2013,,.		0
33	Live demonstration: An implantable wireless multi-channel neural prosthesis for epidural stimulation. , $2016, \ldots$		0
34	Compact pixel architecture for CMOS lateral flow immunoassay readout systems., 2017,,.		0
35	Intermittent Excitation of High-Q Resonators for Low-Power High-Speed Clock Generation. , 2018, , .		0
36	A Comparison between Class-E DC-DC Design Methodologies for Wireless Power Transfer. , 2021, , .		0