Seung Hyun Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8432199/publications.pdf

Version: 2024-02-01

90 papers

1,036 citations

430754 18 h-index 24 g-index

90 all docs 90 docs citations

90 times ranked 1375 citing authors

#	Article	IF	CITATIONS
1	Antiviral effects of Phyllanthus urinaria containing corilagin against human enterovirus 71 and Coxsackievirus A16 in vitro. Archives of Pharmacal Research, 2015, 38, 193-202.	2.7	46
2	Five new quassinoids and cytotoxic constituents from the roots of Eurycoma longifolia. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3835-3840.	1.0	38
3	Phenolics and neolignans isolated from the fruits of Juglans mandshurica Maxim. and their effects on lipolysis in adipocytes. Phytochemistry, 2017, 137, 87-93.	1.4	36
4	Idesolide:  A New Spiro Compound fromIdesiapolycarpa. Organic Letters, 2005, 7, 3275-3277.	2.4	35
5	Chemical constituents of Trichosanthes kirilowii and their cytotoxic activities. Archives of Pharmacal Research, 2015, 38, 1443-1448.	2.7	31
6	Determination of Saponins and Flavonoids in Ivy Leaf Extracts Using HPLC-DAD. Journal of Chromatographic Science, 2015, 53, 478-483.	0.7	27
7	Sesquiterpene derivatives from marine sponge Smenospongia cerebriformis and their anti-inflammatory activity. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1525-1529.	1.0	25
8	Hepatoprotective Dibenzylbutyrolactone Lignans of Torreya nucifera against CCl4-Induced Toxicity in Primary Cultured Rat Hepatocytes. Biological and Pharmaceutical Bulletin, 2003, 26, 1202-1205.	0.6	22
9	Prickly Pear Cactus (<i>Opuntia ficus indica</i> var. <i>saboten</i>) Protects Against Stress-Induced Acute Gastric Lesions in Rats. Journal of Medicinal Food, 2012, 15, 968-973.	0.8	22
10	Muurolaneâ€ <i>type</i> sesquiterpenes from marine sponge <i>Dysidea cinerea</i> Magnetic Resonance in Chemistry, 2014, 52, 51-56.	1.1	22
11	A chemical compound from fruit extract of Juglans mandshurica inhibits melanogenesis through p-ERK-associated MITF degradation. Phytomedicine, 2019, 57, 57-64.	2.3	22
12	A new naphthoquinone analogue and antiviral constituents from the root of <i>Rhinacanthus nasutus</i> . Natural Product Research, 2019, 33, 360-366.	1.0	22
13	Eucommia ulmoides Cortex, Geniposide and Aucubin Regulate Lipotoxicity through the Inhibition of Lysosomal BAX. PLoS ONE, 2014, 9, e88017.	1.1	21
14	Oleanane- type saponins from Glochidion glomerulatum and their cytotoxic activities. Phytochemistry, 2015, 116, 213-220.	1.4	21
15	New ent-kauranes from the fruits of Annona glabra and their inhibitory nitric oxide production in LPS-stimulated RAW264.7 macrophages. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 254-258.	1.0	20
16	Antiinflammatory and analgesic effects of Eurycoma longifolia extracts. Archives of Pharmacal Research, 2016, 39, 421-428.	2.7	20
17	Estrogenic activity of constituents from the rhizomes of Rheum undulatum Linné. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 552-557.	1.0	20
18	Pasakbumin A controls the growth of Mycobacterium tuberculosis by enhancing the autophagy and production of antibacterial mediators in mouse macrophages. PLoS ONE, 2019, 14, e0199799.	1.1	20

#	Article	IF	CITATIONS
19	Aceroside VIII is a New Natural Selective HDAC6 Inhibitor that Synergistically Enhances the Anticancer Activity of HDAC Inhibitor in HT29 Cells. Planta Medica, 2015, 81, 222-227.	0.7	17
20	Chemical Components from <i>Phaeanthus vietnamensis</i> and Their Inhibitory <scp>NO</scp> Production in <scp>BV</scp> 2 Cells. Chemistry and Biodiversity, 2017, 14, e1700013.	1.0	17
21	Demethyleugenol Î ² -Glucopyranoside Isolated from <i>Agastache rugosa</i> Decreases Melanin Synthesis via Down-regulation of MITF and SOX9. Journal of Agricultural and Food Chemistry, 2016, 64, 7733-7742.	2.4	16
22	Application of UPLC-QTOF-MS Based Untargeted Metabolomics in Identification of Metabolites Induced in Pathogen-Infected Rice. Plants, 2021, 10, 213.	1.6	16
23	Phytochemicals in Chinese Chive (Allium tuberosum) Induce the Skeletal Muscle Cell Proliferation via PI3K/Akt/mTOR and Smad Pathways in C2C12 Cells. International Journal of Molecular Sciences, 2021, 22, 2296.	1.8	16
24	Synergistic Induction of 1,25-Dihydroxyvitamin D3- and All-trans-Retinoic Acid-Induced Differentiation of HL-60 Leukemia Cells by Yomogin, a Sesquiterpene Lactone fromArtemisia princeps. Planta Medica, 2002, 68, 886-890.	0.7	15
25	In Vitro Estrogenic and Breast Cancer Inhibitory Activities of Chemical Constituents Isolated from Rheum undulatum L Molecules, 2018, 23, 1215.	1.7	15
26	Simultaneous Determination of Six Compounds in Hedera helix L. Using UPLC-ESI–MS/MS. Chromatographia, 2017, 80, 1025-1033.	0.7	14
27	Chemical constituents from <i>Schisandra sphenanthera</i> and their cytotoxic activity. Natural Product Research, 2021, 35, 3360-3369.	1.0	14
28	Simultaneous quantitation of six major quassinoids in Tongkat Ali dietary supplements by liquid chromatography with tandem mass spectrometry. Journal of Separation Science, 2015, 38, 2260-2266.	1.3	13
29	Chemical constituents of leaves of Persea americana (avocado) and their protective effects against neomycin-induced hair cell damage. Revista Brasileira De Farmacognosia, 2019, 29, 739-743.	0.6	13
30	Cycloartane-type triterpenoid derivatives and a flavonoid glycoside from the burs of Castanea crenata. Phytochemistry, 2019, 158, 135-141.	1.4	13
31	Five New Pregnane Glycosides from Gymnema sylvestre and Their α-Glucosidase and α-Amylase Inhibitory Activities. Molecules, 2020, 25, 2525.	1.7	13
32	Protective Mechanisms of Avocado Oil Extract Against Ototoxicity. Nutrients, 2020, 12, 947.	1.7	13
33	Mitigation of Gastric Damage Using Cinnamomum cassia Extract: Network Pharmacological Analysis of Active Compounds and Protection Effects in Rats. Plants, 2022, 11, 716.	1.6	13
34	Stereochemical assignment of five new lignan glycosides from <i>Viscum album</i> by NMR study combined with CD spectroscopy. Magnetic Resonance in Chemistry, 2012, 50, 772-777.	1.1	12
35	Isolation of two new bioactive sesquiterpene lactone glycosides from the roots of Ixeris dentata. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4562-4566.	1.0	12
36	Labdane-type diterpenoids from Vitex limonifolia and their antivirus activities. Journal of Natural Medicines, 2018, 72, 290-297.	1.1	12

#	Article	IF	CITATIONS
37	Avocado Oil Extract Modulates Auditory Hair Cell Function through the Regulation of Amino Acid Biosynthesis Genes. Nutrients, 2019, 11, 113.	1.7	12
38	Chemical components from the twigs of Caesalpinia latisiliqua and their antiviral activity. Journal of Natural Medicines, 2020, 74, 26-33.	1.1	12
39	Neuraminidase inhibitory activity by compounds isolated from aerial parts of <i>Rhinacanthus nasutus</i> . Natural Product Research, 2018, 32, 2111-2115.	1.0	11
40	Discovery of cycloartane-type triterpene saponins from Mussaenda glabra. Phytochemistry Letters, 2019, 33, 39-45.	0.6	11
41	Combined Anti-Adipogenic Effects of Hispidulin and p-Synephrine on 3T3-L1 Adipocytes. Biomolecules, 2021, 11, 1764.	1.8	11
42	Brevilin A Isolated from Centipeda minima Induces Apoptosis in Human Gastric Cancer Cells via an Extrinsic Apoptotic Signaling Pathway. Plants, 2022, 11, 1658.	1.6	11
43	lxeris dentata extract regulates salivary secretion through the activation of aquaporin-5 and prevents diabetes-induced xerostomia. Journal of Experimental Pharmacology, 2017, Volume 9, 81-91.	1.5	10
44	Two complete chloroplast genome sequences and intra-species diversity for <i>Rehmannia glutinosa</i> (Orobanchaceae). Mitochondrial DNA Part B: Resources, 2019, 4, 176-177.	0.2	10
45	Oleanane-type triterpene saponins from <i>Aralia armata</i> leaves and their cytotoxic activity. Natural Product Research, 2022, 36, 142-149.	1.0	10
46	Megastigmane Glycosides from <i>DocyniaÂindica</i> and Their Antiâ€inflammatory Activities. Helvetica Chimica Acta, 2016, 99, 681-686.	1.0	9
47	An ultra-high-performance liquid chromatography-tandem mass spectrometric method for the determination of hederacoside C, a drug candidate for respiratory disorder, in rat plasma. Journal of Pharmaceutical and Biomedical Analysis, 2016, 129, 90-95.	1.4	9
48	Alkaloid glycosides and their cytotoxic constituents from Zanthoxylum nitidum. Phytochemistry Letters, 2019, 32, 47-51.	0.6	9
49	1-Cinnamoyltrichilinin from Melia azedarach Causes Apoptosis through the p38 MAPK Pathway in HL-60 Human Leukemia Cells. International Journal of Molecular Sciences, 2020, 21, 7506.	1.8	9
50	Enantiomeric chromene derivatives with anticancer effects from Mallotus apelta. Bioorganic Chemistry, 2020, 104, 104268.	2.0	9
51	Novel ANO1 Inhibitor from Mallotus apelta Extract Exerts Anticancer Activity through Downregulation of ANO1. International Journal of Molecular Sciences, 2020, 21, 6470.	1.8	9
52	Four new sucrose diesters of substituted truxinic acids from Trigonostemon honbaensis with their anoctamin-1 inhibitory activity. Bioorganic Chemistry, 2020, 102, 104058.	2.0	9
53	Rapid Determination of Betulin in <i>Betula platyphylla</i> Outer Bark Using Near-Infrared Spectroscopy. Analytical Letters, 2013, 46, 1289-1298.	1.0	8
54	Time-dependent Inhibition of CYP2C8 and CYP2C19 by Hedera helix Extracts, A Traditional Respiratory Herbal Medicine. Molecules, 2017, 22, 1241.	1.7	8

#	Article	IF	Citations
55	Optimization of Extraction Conditions for Active Compounds of Herbal Medicinal Formula, DF, by Response Surface Methodology. Natural Product Sciences, 2017, 23, 9.	0.2	8
56	Triterpenoid glycosides from the rhizomes of <i>Allium ascalonicum</i> and their anoctamin-1 inhibitory activity. Natural Product Research, 2021, 35, 4338-4346.	1.0	8
57	Vaccination with an ovalbumin/interleukin-4 fusion DNA efficiently induces Th2 cell-mediated immune responses in an ovalbumin-specific manner. Archives of Pharmacal Research, 1998, 21, 537-542.	2.7	7
58	Cytotoxic sesquiterpene glucosides from Fissistigma pallens. Phytochemistry, 2020, 172, 112255.	1.4	7
59	Stilbenes contribute to the anticancer effects of Rheum�undulatum L. through activation of apoptosis. Oncology Letters, 2019, 17, 2953-2959.	0.8	6
60	Optimization of extraction conditions for enhancing estrogenic activity of Rheum undulatum Linn $ ilde{A}$ © using response surface methodology. Separation Science and Technology, 2020, 55, 2080-2089.	1.3	6
61	Isolation of bioactive limonoids from the fruits of <i>Melia azedarach</i> . Journal of Asian Natural Products Research, 2020, 22, 830-838.	0.7	6
62	Two new norlignans from the aerial parts of <i>Pouzolzia sanguinea</i> (Blume) Merr. Natural Product Research, 2022, 36, 157-164.	1.0	6
63	The effect of idesolide on hippocampusâ€dependent recognition memory. Animal Cells and Systems, 2008, 12, 11-14.	0.8	5
64	Chemical Components of <i>Ardisia splendens</i> Leaves and Their Activity against Coxsackie A16 Viruses. Natural Product Communications, 2014, 9, 1934578X1400900.	0.2	5
65	Micelle-Mediated Extraction of Dibenzocyclooctadiene Lignans from Schisandra chinensis with Analysis by High-Performance Liquid Chromatography. Journal of Chromatographic Science, 2014, 52, 745-750.	0.7	5
66	Chemical components from the leaves of Ardisia insularis and their cytotoxic activity. Archives of Pharmacal Research, 2015, 38, 1926-1931.	2.7	5
67	Spirostanol saponins from Tacca vietnamensis and their anti-inflammatory activity. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3780-3784.	1.0	5
68	Determination of eurycomanone in rat plasma using hydrophilic interaction liquid chromatography–tandem mass spectrometry for pharmacokinetic study. Biomedical Chromatography, 2017, 31, e3831.	0.8	5
69	The chemical constituents from twigs of Lindera glauca (Siebold & Zucc.) Blume and their antiviral activities. Phytochemistry Letters, 2018, 25, 74-80.	0.6	5
70	The Chemical Constituents from Fruits of Catalpa bignonioides Walt. and Their α-Glucosidase Inhibitory Activity and Insulin Secretion Effect. Molecules, 2021, 26, 362.	1.7	5
71	Anti-influenza Sesquiterpene from the Roots of Reynoutria japonica. Natural Product Communications, 2014, 9, 1934578X1400900.	0.2	4
72	Neuraminidase Inhibitors from the Roots of Caragana sinica. Chemistry and Biodiversity, 2020, 17, e2000470.	1.0	4

#	Article	IF	Citations
73	Neuraminidase inhibitory diarylheptanoids from Alpinia officinarum: In vitro and molecular docking studies. Bioorganic Chemistry, 2021, 107, 104526.	2.0	4
74	Fatty Acid Derivatives Isolated from the Oil of Persea americana (Avocado) Protects against Neomycin-Induced Hair Cell Damage. Plants, 2021, 10, 171.	1.6	4
75	Simultaneous Determination and Stability Test of Two Phthalic Anhydride Derivatives, Senkyunolide A and <i>>Z</i> àâ€Ligustilide, in the Water Extract of Cnidium Rhizome from Different Geographical Regions and Species Using HPLCâ€LIVD Analysis. Bulletin of the Korean Chemical Society, 2018, 39, 784-788.	1.0	3
76	Three new flavonol glycosides from Fissistigma pallens. Bioscience, Biotechnology and Biochemistry, 2019, 83, 2177-2182.	0.6	3
77	Four new pregnane glycosides fromGymnema latifoliumand theirα-glucosidase andα-amylase inhibitory activities. Natural Product Research, 2020, 35, 1-8.	1.0	3
78	The anti-glycative potentials of pregnane glycosides from Gymnema sylvestre. Phytochemistry Letters, 2020, 38, 19-24.	0.6	3
79	New Alkaloids and Anti-inflammatory Constituents from the Leaves of Antidesma ghaesembilla. Natural Product Communications, 2017, 12, 1934578X1701200.	0.2	2
80	Dihydrostilbene glycosides from <i>Camellia sinensis</i> var. assamica and their cytotoxic activity. Natural Product Research, 2022, 36, 3931-3937.	1.0	2
81	Anti-Inflammatory Activity of 4-((1R,2R)-3-Hydroxy-1-(4-hydroxyphenyl)-1-methoxypropan-2-yl)-2-methoxyphenol Isolated from Juglans mandshurica Maxim. in LPS-Stimulated RAW 264.7 Macrophages and Zebrafish Larvae Model. Pharmaceuticals. 2021. 14. 771.	1.7	2
82	Lobophorin Producing Endophytic Streptomyces olivaceus JB1 Associated With Maesa japonica (Thunb.) Moritzi & Coll Frontiers in Microbiology, 2022, 13, 881253.	1.5	2
83	A New Phenyl Ethyl Glycoside from the Twigs of <i>Acer tegmentosum</i> . Natural Product Communications, 2015, 10, 1934578X1501000.	0.2	1
84	¹ H and ¹³ C NMR assignments of tricanguinas A–B, coumarin monoterpenes from <i>10,000 from √10,000 from √10,000</i>	1.1	1
85	Proliferation Effects on Hair Growth of Compounds Isolated from the Bark of Dalbergia oliveri. Natural Product Communications, 2017, 12, 1934578X1701201.	0.2	1
86	Chemical constituents from the fruits of Schisandra sphenanthera and their cytotoxicity activity. Revista Brasileira De Farmacognosia, 2019, 29, 578-581.	0.6	1
87	Isolation of amylase regulators from the leaves of <i>Ixeridium dentatum</i> Isolation of amylase regulators from the leaves of <i>Ixeridium dentatum</i> Isolation of amylase regulators from the leaves of <i>Ixeridium dentatum</i> Isolation of amylase regulators from the leaves of <i>Ixeridium dentatum</i> Isolation of amylase regulators from the leaves of <i>Ixeridium dentatum</i> Isolation of amylase regulators from the leaves of <i>Ixeridium dentatum</i> Isolation of amylase regulators from the leaves of <i>Ixeridium dentatum</i> Isolation of amylase regulators from the leaves of <i>Ixeridium dentatum</i> Isolation of amylase regulators from the leaves of <i>Ixeridium dentatum</i> Isolation of amylase regulators from the leaves of <i>Ixeridium dentatum</i> Isolation of amylase regulators from the leaves of <i>Ixeridium dentatum</i> Isolation of amylase regulators from the leaves of <i>Ixeridium dentatum</i> Isolation of amylase regulators from the leaves of <i>Ixeridium dentatum</i> Isolation of amylase regulators from the leaves of <i>Ixeridium dentatum</i> Isolation of <i>Ixeridium dentatum</i> Ixeridium dentatumIxeridium dentatum </td <td>1.0</td> <td>1</td>	1.0	1
88	Oleanane- <i>type</i> Triterpene Saponins from <i>Glochidion glomerulatum</i> Natural Product Communications, 2015, 10, 1934578X1501000.	0.2	0
89	Chemical Constituents of Phoebe poilanei and Their Cytotoxic Activity. Natural Product Communications, 2019, 14, 1934578X1985096.	0.2	0
90	The chemical constituents from twigs of <i>Hamamelis japonica</i> and their antiviral activities. Natural Product Research, 0, , 1-8.	1.0	0