
Slobodan M Todorovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8432183/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthetic neuroactive steroids as new sedatives and anaesthetics: Back to the future. Journal of Neuroendocrinology, 2022, 34, e13086.	2.6	7
2	General Anesthesia and the Young Brain: The Importance of Novel Strategies with Alternate Mechanisms of Action. International Journal of Molecular Sciences, 2022, 23, 1889.	4.1	3
3	Thalamic T-Type Calcium Channels as Targets for Hypnotics and General Anesthetics. International Journal of Molecular Sciences, 2022, 23, 2349.	4.1	5
4	L-cysteine modulates visceral nociception mediated by the CaV2.3 R-type calcium channels. Pflugers Archiv European Journal of Physiology, 2022, 474, 435-445.	2.8	5
5	The Mechanisms of Plasticity of Nociceptive Ion Channels in Painful Diabetic Neuropathy. Frontiers in Pain Research, 2022, 3, 869735.	2.0	3
6	Further Evidence that Inhibition of Neuronal Voltage-Gated Calcium Channels Contributes to the Hypnotic Effect of Neurosteroid Analogue, 3β-OH. Frontiers in Pharmacology, 2022, 13, .	3.5	1
7	The T-type calcium channel isoform Cav3.1 is a target for the hypnotic effect of the anaesthetic neurosteroid (3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile. British Journal of Anaesthesia, 2021, 126, 245-255.	3.4	16
8	Alpha lipoic acid attenuates evoked and spontaneous pain following surgical skin incision in rats. Channels, 2021, 15, 398-407.	2.8	3
9	Differential effects of the novel neurosteroid hypnotic (3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile on electroencephalogram activity in male and female rats. British Journal of Anaesthesia, 2021, 127, 435-446.	3.4	14
10	Different roles of T-type calcium channel isoforms in hypnosis induced by an endogenous neurosteroid epipregnanolone. Neuropharmacology, 2021, 197, 108739.	4.1	3
11	Painful diabetic neuropathy leads to functional CaV3.2 expression and spontaneous activity in skin nociceptors of mice. Experimental Neurology, 2021, 346, 113838.	4.1	9
12	Neonatal Isoflurane Does Not Affect Sleep Architecture and Minimally Alters Neuronal Beta Oscillations in Adolescent Rats. Frontiers in Behavioral Neuroscience, 2021, 15, 703859.	2.0	1
13	The Role of Free Oxygen Radicals in Lasting Hyperexcitability of Rat Subicular Neurons After Exposure to General Anesthesia During Brain Development. Molecular Neurobiology, 2020, 57, 208-216.	4.0	8
14	Novel neuroactive steroid with hypnotic and Tâ€ŧype calcium channel blocking properties exerts effective analgesia in a rodent model of postâ€surgical pain. British Journal of Pharmacology, 2020, 177, 1735-1753.	5.4	18
15	The role of KCC2 in hyperexcitability of the neonatal brain. Neuroscience Letters, 2020, 738, 135324.	2.1	8
16	Preemptive Analgesic Effect of Intrathecal Applications of Neuroactive Steroids in a Rodent Model of Post-Surgical Pain: Evidence for the Role of T-Type Calcium Channels. Cells, 2020, 9, 2674.	4.1	5
17	Global genetic deletion of CaV3.3 channels facilitates anaesthetic induction and enhances isoflurane-sparing effects of T-type calcium channel blockers. Scientific Reports, 2020, 10, 21510.	3.3	5
18	Neonatal Ketamine Alters High-Frequency Oscillations and Synaptic Plasticity in the Subiculum But Does not Affect Sleep Macrostructure in Adolescent Rats. Frontiers in Systems Neuroscience, 2020, 14, 26.	2.5	9

#	Article	IF	CITATIONS
19	Neuroactive steroids alphaxalone and CDNC24 are effective hypnotics and potentiators of GABAA currents, but are not neurotoxic to the developing rat brain. British Journal of Anaesthesia, 2020, 124, 603-613.	3.4	23
20	Glycosylation of CaV3.2 Channels Contributes to the Hyperalgesia in Peripheral Neuropathy of Type 1 Diabetes. Frontiers in Cellular Neuroscience, 2020, 14, 605312.	3.7	13
21	A novel phospho-modulatory mechanism contributes to the calcium-dependent regulation of T-type Ca2+ channels. Scientific Reports, 2019, 9, 15642.	3.3	4
22	Inhibition of multiple voltage-gated calcium channels may contribute to spinally mediated analgesia by epipregnanolone in a rat model of surgical paw incision. Channels, 2019, 13, 48-61.	2.8	9
23	Alterations in Oscillatory Behavior of Central Medial Thalamic Neurons Demonstrate a Key Role of CaV3.1 Isoform of T-Channels During Isoflurane-Induced Anesthesia. Cerebral Cortex, 2019, 29, 4679-4696.	2.9	24
24	Neonatal general anesthesia causes lasting alterations in excitatory and inhibitory synaptic transmission in the ventrobasal thalamus of adolescent female rats. Neurobiology of Disease, 2019, 127, 472-481.	4.4	24
25	Novel neurosteroid hypnotic blocks T-type calcium channel-dependent rebound burst firing and suppresses long-term potentiation in the rat subiculum. British Journal of Anaesthesia, 2019, 122, 643-651.	3.4	12
26	Pharmacological Antagonism of T-Type Calcium Channels Constrains Rebound Burst Firing in Two Distinct Subpopulations of GABA Neurons in the Rat Ventral Tegmental Area: Implications for α-Lipoic Acid. Frontiers in Pharmacology, 2019, 10, 1402.	3.5	2
27	CaV3.1 isoform of T-type calcium channels supports excitability of rat and mouse ventral tegmental area neurons. Neuropharmacology, 2018, 135, 343-354.	4.1	13
28	Histone Deacetylase Inhibitor Entinostat (MS-275) Restores Anesthesia-induced Alteration of Inhibitory Synaptic Transmission in the Developing Rat Hippocampus. Molecular Neurobiology, 2018, 55, 222-228.	4.0	16
29	Neurosteroids in Pain Management: A New Perspective on an Old Player. Frontiers in Pharmacology, 2018, 9, 1127.	3.5	24
30	Selective inhibition of Ca _V 3.2 channels reverses hyperexcitability of peripheral nociceptors and alleviates postsurgical pain. Science Signaling, 2018, 11, .	3.6	48
31	Cytosolic ATP Relieves Voltage-Dependent Inactivation of T-Type Calcium Channels and Facilitates Excitability of Neurons in the Rat Central Medial Thalamus. ENeuro, 2018, 5, ENEURO.0016-18.2018.	1.9	11
32	The role of Tâ€ŧype calcium channels in the subiculum: to burst or not to burst?. Journal of Physiology, 2017, 595, 6327-6348.	2.9	29
33	Redox and trace metal regulation of ion channels in the pain pathway. Biochemical Journal, 2015, 470, 275-280.	3.7	6
34	Hyperexcitability of Rat Thalamocortical Networks after Exposure to General Anesthesia during Brain Development. Journal of Neuroscience, 2015, 35, 1481-1492.	3.6	30
35	Early Exposure to General Anesthesia with Isoflurane Downregulates Inhibitory Synaptic Neurotransmission in the Rat Thalamus. Molecular Neurobiology, 2015, 52, 952-958.	4.0	25
36	ls Diabetic Nerve Pain Caused by Dysregulated Ion Channels in Sensory Neurons?. Diabetes, 2015, 64, 3987-3989.	0.6	15

#	Article	IF	CITATIONS
37	CaV3.2 T-Type Calcium Channels in Peripheral Sensory Neurons Are Important for Mibefradil-Induced Reversal of Hyperalgesia and Allodynia in Rats with Painful Diabetic Neuropathy. PLoS ONE, 2014, 9, e91467.	2.5	50
38	Targeting of CaV3.2 T-type calcium channels in peripheral sensory neurons for the treatment of painful diabetic neuropathy. Pflugers Archiv European Journal of Physiology, 2014, 466, 701-706.	2.8	55
39	Redox Regulation of Neuronal Voltage-Gated Calcium Channels. Antioxidants and Redox Signaling, 2014, 21, 880-891.	5.4	31
40	Inhibition of CaV3.2 T-type calcium channels in peripheral sensory neurons contributes to analgesic properties of epipregnanolone. Psychopharmacology, 2014, 231, 3503-3515.	3.1	25
41	Reversal of Neuropathic Pain in Diabetes by Targeting Glycosylation of Cav3.2 T-Type Calcium Channels. Diabetes, 2013, 62, 3828-3838.	0.6	96
42	Neuropathic pain: role for presynaptic T-type channels in nociceptive signaling. Pflugers Archiv European Journal of Physiology, 2013, 465, 921-927.	2.8	57
43	Molecular and biophysical basis of glutamate and trace metal modulation of voltage-gated Cav2.3 calcium channels. Journal of General Physiology, 2012, 139, 219-234.	1.9	32
44	Presynaptic CaV3.2 Channels Regulate Excitatory Neurotransmission in Nociceptive Dorsal Horn Neurons. Journal of Neuroscience, 2012, 32, 9374-9382.	3.6	152
45	Inhibition of T-type calcium current in rat thalamocortical neurons by isoflurane. Neuropharmacology, 2012, 63, 266-273.	4.1	27
46	General Anesthesia Causes Long-term Impairment of Mitochondrial Morphogenesis and Synaptic Transmission in Developing Rat Brain. Anesthesiology, 2011, 115, 992-1002.	2.5	164
47	Tâ€ŧype voltageâ€gated calcium channels as targets for the development of novel pain therapies. British Journal of Pharmacology, 2011, 163, 484-495.	5.4	144
48	Free radical signalling underlies inhibition of Ca _V 3.2 Tâ€ŧype calcium channels by nitrous oxide in the pain pathway. Journal of Physiology, 2011, 589, 135-148.	2.9	32
49	TTA-P2 Is a Potent and Selective Blocker of T-Type Calcium Channels in Rat Sensory Neurons and a Novel Antinociceptive Agent. Molecular Pharmacology, 2011, 80, 900-910.	2.3	144
50	Are neuronal voltage-gated calcium channels valid cellular targets for general anesthetics?. Channels, 2010, 4, 518-522.	2.8	22
51	A Modeling Study of T-Type Ca2+ Channel Gating and Modulation by L-Cysteine in Rat Nociceptors. Biophysical Journal, 2010, 98, 197-206.	0.5	7
52	Mechanisms of inhibition of CaV3.1 T-type calcium current by aliphatic alcohols. Neuropharmacology, 2010, 59, 58-69.	4.1	10
53	Molecular Mechanisms of Lipoic Acid Modulation of T-Type Calcium Channels in Pain Pathway. Journal of Neuroscience, 2009, 29, 9500-9509.	3.6	57
54	Mechanisms and Functional Significance of Inhibition of Neuronal T-Type Calcium Channels by Isoflurane. Molecular Pharmacology, 2009, 75, 542-554.	2.3	23

#	Article	IF	CITATIONS
55	Selective T-Type Calcium Channel Blockade Alleviates Hyperalgesia in <i>ob/ob</i> Mice. Diabetes, 2009, 58, 2656-2665.	0.6	113
56	In vivo silencing of the CaV3.2 T-type calcium channels in sensory neurons alleviates hyperalgesia in rats with streptozocin-induced diabetic neuropathy. Pain, 2009, 145, 184-195.	4.2	153
57	Are neuroactive steroids promising therapeutic agents in the management of acute and chronic pain?. Psychoneuroendocrinology, 2009, 34, S178-S185.	2.7	23
58	Role of voltage-gated calcium channels in ascending pain pathways. Brain Research Reviews, 2009, 60, 84-89.	9.0	215
59	Upregulation of the T-Type Calcium Current in Small Rat Sensory Neurons After Chronic Constrictive Injury of the Sciatic Nerve. Journal of Neurophysiology, 2008, 99, 3151-3156.	1.8	184
60	Regulation of T-Type Calcium Channels in the Peripheral Pain Pathway. Channels, 2007, 1, 238-245.	2.8	33
61	Reducing Agents Sensitize C-Type Nociceptors by Relieving High-Affinity Zinc Inhibition of T-Type Calcium Channels. Journal of Neuroscience, 2007, 27, 8250-8260.	3.6	147
62	Cell-Specific Alterations of T-Type Calcium Current in Painful Diabetic Neuropathy Enhance Excitability of Sensory Neurons. Journal of Neuroscience, 2007, 27, 3305-3316.	3.6	240
63	Inhibition of Tâ€ŧype Calcium Current in the Reticular Thalamic Nucleus by a Novel Neuroactive Steroid. Annals of the New York Academy of Sciences, 2007, 1122, 83-94.	3.8	14
64	Differential effects of endogenous cysteine analogs on peripheral thermal nociception in intact rats. Pain, 2006, 125, 53-64.	4.2	20
65	CaV3.2 is the major molecular substrate for redox regulation of T-type Ca2+channels in the rat and mouse thalamus. Journal of Physiology, 2006, 574, 415-430.	2.9	81
66	The role of peripheral T-type calcium channels in pain transmission. Cell Calcium, 2006, 40, 197-203.	2.4	61
67	Contrasting anesthetic sensitivities of T-type Ca2+ channels of reticular thalamic neurons and recombinant Cav 3.3 channels. British Journal of Pharmacology, 2005, 144, 59-70.	5.4	56
68	Different kinetic properties of two T-type Ca2+currents of rat reticular thalamic neurones and their modulation by enflurane. Journal of Physiology, 2005, 566, 125-142.	2.9	59
69	The Endogenous Redox Agent L-Cysteine Induces T-Type Ca2+ Channel-Dependent Sensitization of a Novel Subpopulation of Rat Peripheral Nociceptors. Journal of Neuroscience, 2005, 25, 8766-8775.	3.6	148
70	Neuroactive Steroids as Targets for Development of Novel Pain Therapies. Current Medicinal Chemistry - Central Nervous System Agents, 2005, 5, 157-164.	0.5	6
71	New evidence that both T-type calcium channels and GABAA channels are responsible for the potent peripheral analgesic effects of 5î±-reduced neuroactive steroids. Pain, 2005, 114, 429-443.	4.2	121
72	5β-Reduced Neuroactive Steroids Are Novel Voltage-Dependent Blockers of T-Type Ca2+ Channels in Rat Sensory Neurons in Vitro and Potent Peripheral Analgesics in Vivo. Molecular Pharmacology, 2004, 66, 1223-1235.	2.3	80

Slobodan M Todorovic

#	Article	IF	CITATIONS
73	Redox modulation of peripheral T-type Ca2+ channels in vivo: alteration of nerve injury-induced thermal hyperalgesia. Pain, 2004, 109, 328-339.	4.2	62
74	Mechanical and thermal anti-nociception in rats after systemic administration of verapamil. Neuroscience Letters, 2004, 360, 57-60.	2.1	22
75	Potent analgesic effects of anticonvulsants on peripheral thermal nociception in rats. British Journal of Pharmacology, 2003, 140, 255-260.	5.4	57
76	Mechanical and thermal antinociception in rats following systemic administration of mibefradil, a T-type calcium channel blocker. Brain Research, 2002, 951, 336-340.	2.2	100
77	Redox Modulation of T-Type Calcium Channels in Rat Peripheral Nociceptors. Neuron, 2001, 31, 75-85.	8.1	230
78	Properties of Ba2+ currents arising from human α1E and α1Eβ3 constructs expressed in HEK293 cells: physiology, pharmacology, and comparison to native T-type Ba2+ currents. Neuropharmacology, 1998, 37, 957-972.	4.1	41
79	The Anesthetic Steroid (+)-3α-Hydroxy-5α-androstane-17β-carbonitrile Blocks N-, Q-, and R-Type, but Not L- and P-Type, High Voltage-Activated Ca2+Current in Hippocampal and Dorsal Root Ganglion Neurons of the Rat. Molecular Pharmacology, 1998, 54, 559-568.	2.3	29
80	Pharmacological Properties of T-Type Ca ²⁺ Current in Adult Rat Sensory Neurons: Effects of Anticonvulsant and Anesthetic Agents. Journal of Neurophysiology, 1998, 79, 240-252.	1.8	301
81	The role of voltage-gated calcium channels in the mechanisms of anesthesia and perioperative analgesia. Current Opinion in Anaesthesiology, 0, Publish Ahead of Print, .	2.0	3