
Frank S Menniti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8432145/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacological Reviews, 2021, 73, 1469-1658.	7.1	237
2	Modulating inhibitory response control through potentiation of GluN2D subunit-containing NMDA receptors. Neuropharmacology, 2020, 173, 107994.	2.0	5
3	PTC-174, a positive allosteric modulator of NMDA receptors containing GluN2C or GluN2D subunits. Neuropharmacology, 2020, 173, 107971.	2.0	13
4	PDE10A Inhibitors—Clinical Failure or Window Into Antipsychotic Drug Action?. Frontiers in Neuroscience, 2020, 14, 600178.	1.4	20
5	Phosphodiesterase 9A in Brain Regulates cGMP Signaling Independent of Nitric-Oxide. Frontiers in Neuroscience, 2019, 13, 837.	1.4	16
6	Identification of new PDE9A isoforms and how their expression andÂsubcellular compartmentalization in the brain change across the life span. Neurobiology of Aging, 2018, 65, 217-234.	1.5	30
7	Discovery of Potent and Selective Periphery-Restricted Quinazoline Inhibitors of the Cyclic Nucleotide Phosphodiesterase PDE1. Journal of Medicinal Chemistry, 2018, 61, 4635-4640.	2.9	19
8	NMDA Receptors in the Central Nervous System. Methods in Molecular Biology, 2017, 1677, 1-80.	0.4	105
9	N-Methyl-D-Aspartate Receptors, Ketamine, and Rett Syndrome: Something Special on the Road to Treatments?. Biological Psychiatry, 2016, 79, 710-712.	0.7	22
10	Structural Basis for Negative Allosteric Modulation of GluN2A-Containing NMDA Receptors. Neuron, 2016, 91, 1316-1329.	3.8	74
11	Differential Effects of an NR2B NAM and Ketamine on Synaptic Potentiation and Gamma Synchrony: Relevance to Rapid-Onset Antidepressant Efficacy. Neuropsychopharmacology, 2016, 41, 1486-1494.	2.8	29
12	MPX-004 and MPX-007: New Pharmacological Tools to Study the Physiology of NMDA Receptors Containing the GluN2A Subunit. PLoS ONE, 2016, 11, e0148129.	1.1	45
13	Translational psychiatry—light at the end of the tunnel. Annals of the New York Academy of Sciences, 2015, 1344, 1-11.	1.8	11
14	Phosphodiesterase 10A inhibitor MP-10 effects in primates: Comparison with risperidone and mechanistic implications. Neuropharmacology, 2014, 77, 257-267.	2.0	22
15	Small-molecule phosphodiesterase probes: discovery of potent and selective CNS-penetrable quinazoline inhibitors of PDE1. MedChemComm, 2014, 5, 1290-1296.	3.5	31
16	Positive Allosteric Modulation of AMPA Receptors from Efficacy to Toxicity: The Interspecies Exposure-Response Continuum of the Novel Potentiator PF-4778574. Journal of Pharmacology and Experimental Therapeutics, 2013, 347, 212-224.	1.3	46
17	PDE4 as a target for cognition enhancement. Expert Opinion on Therapeutic Targets, 2013, 17, 1011-1027.	1.5	114
18	Assessment of adverse effects of neurotropic drugs in monkeys with the "Drug Effects on the Nervous System―(DENS) scale, Journal of Neuroscience Methods, 2013, 215, 97-102	1.3	7

#	Article	IF	CITATIONS
19	Allosteric Modulators for the Treatment of Schizophrenia: Targeting Glutamatergic Networks. Current Topics in Medicinal Chemistry, 2013, 13, 26-54.	1.0	74
20	Phosphodiesterase 9A Regulates Central cGMP and Modulates Responses to Cholinergic and Monoaminergic Perturbation In Vivo. Journal of Pharmacology and Experimental Therapeutics, 2012, 341, 396-409.	1.3	73
21	A non-brain penetrant PDE5A inhibitor improves functional recovery after stroke in rats. Restorative Neurology and Neuroscience, 2012, 30, 283-289.	0.4	6
22	Application of Structure-Based Drug Design and Parallel Chemistry to Identify Selective, Brain Penetrant, In Vivo Active Phosphodiesterase 9A Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 9055-9068.	2.9	50
23	Design and Discovery of 6-[(3 <i>S</i> ,4 <i>S</i>)-4-Methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(tetrahydro-2 <i>H</i> -pyran-4-yl)-1 (PF-04447943), a Selective Brain Penetrant PDE9A Inhibitor for the Treatment of Cognitive Disorders. Iournal of Medicinal Chemistry, 2012, 55, 9045-9054.	.5-dihydro-4	· <i>H</i> −pyra
24	Phosphodiesterase type 5 (PDE5) inhibition improves object recognition memory: Indications for central and peripheral mechanisms. Neurobiology of Learning and Memory, 2012, 97, 370-379.	1.0	60
25	PDE Inhibition and cognition enhancement. Expert Opinion on Therapeutic Patents, 2012, 22, 349-354.	2.4	48
26	The distribution of phosphodiesterase 2A in the rat brain. Neuroscience, 2012, 226, 145-155.	1.1	55
27	Use of Structure-Based Design to Discover a Potent, Selective, In Vivo Active Phosphodiesterase 10A Inhibitor Lead Series for the Treatment of Schizophrenia. Journal of Medicinal Chemistry, 2011, 54, 4536-4547.	2.9	47
28	Phosphodiesterase Inhibition to Target the Synaptic Dysfunction in Alzheimer's Disease. Topics in Medicinal Chemistry, 2010, , 57-90.	0.4	11
29	Prevention of ketamine-induced working memory impairments by AMPA potentiators in a nonhuman primate model of cognitive dysfunction. Behavioural Brain Research, 2010, 212, 41-48.	1.2	46
30	Alterations in gene regulation following inhibition of the striatum-enriched phosphodiesterase, PDE10A. Neuropharmacology, 2010, 58, 444-451.	2.0	48
31	Glutamate Receptor Ion Channels: Structure, Regulation, and Function. Pharmacological Reviews, 2010, 62, 405-496.	7.1	2,973
32	Inhibition of the Striatal Specific Phosphodiesterase PDE10A Ameliorates Striatal and Cortical Pathology in R6/2 Mouse Model of Huntington's Disease. PLoS ONE, 2010, 5, e13417.	1.1	158
33	Cyclic GMP Signaling Is Involved in the Luteinizing Hormone-Dependent Meiotic Maturation of Mouse Oocytes1. Biology of Reproduction, 2009, 81, 595-604.	1.2	277
34	Phosphodiesterase 5A Inhibitors Improve Functional Recovery after Stroke in Rats: Optimized Dosing Regimen with Implications for Mechanism. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 842-850.	1.3	39
35	Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18225-18230.	3.3	144
36	Inhibition of Phosphodiesterase 10A Increases the Responsiveness of Striatal Projection Neurons to Cortical Stimulation. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 785-795.	1.3	119

#	Article	IF	CITATIONS
37	Immunohistochemical Localization of Phosphodiesterase 2A in Multiple Mammalian Species. Journal of Histochemistry and Cytochemistry, 2009, 57, 933-949.	1.3	152
38	Phosphodiesterase 10 inhibition reduces striatal excitotoxicity in the quinolinic acid model of Huntington's disease. Neurobiology of Disease, 2009, 34, 450-456.	2.1	71
39	Potent and cellularly active 4-aminoimidazole inhibitors of cyclin-dependent kinase 5/p25 for the treatment of Alzheimer's disease. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5703-5707.	1.0	40
40	Identification of a Brain Penetrant PDE9A Inhibitor Utilizing Prospective Design and Chemical Enablement as a Rapid Lead Optimization Strategy. Journal of Medicinal Chemistry, 2009, 52, 7946-7949.	2.9	67
41	Discovery of a Novel Class of Phosphodiesterase 10A Inhibitors and Identification of Clinical Candidate 2-[4-(1-Methyl-4-pyridin-4-yl-1 <i>H</i> -pyrazol-3-yl)-phenoxymethyl]-quinoline (PF-2545920) for the Treatment of Schizophreniaâ€Coordinates of the PDE10A crystal structures have been deposited in the Protein Data Bank for compound 1 (3HQW), 2 (3HQY), 3 (3HQW) and 9 (3HR1) Journal of Medicinal	2.9	195
42	Chemistry, 2009, 52, 5166-5766. PDE10A inhibitors: an assessment of the current CNS drug discovery landscape. Current Opinion in Drug Discovery & Development, 2009, 12, 458-67.	1.9	16
43	Effects of a NR2B selective NMDA glutamate antagonist, CPâ€101,606, on dyskinesia and parkinsonism. Movement Disorders, 2008, 23, 1860-1866.	2.2	126
44	Synthesis of Novel Pyrrolo[3,4â€ <i>d</i>]pyrazoleâ€dicarboxylic Acids and Evaluation of Their Interaction with Glutamate Receptors. Chemistry and Biodiversity, 2008, 5, 657-663.	1.0	9
45	PDE4B polymorphisms and decreased PDE4B expression are associated with schizophrenia. Schizophrenia Research, 2008, 101, 36-49.	1.1	120
46	Preclinical Characterization of Selective Phosphodiesterase 10A Inhibitors: A New Therapeutic Approach to the Treatment of Schizophrenia. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 681-690.	1.3	268
47	Structural basis for the catalytic mechanism of human phosphodiesterase 9. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13309-13314.	3.3	60
48	An Innovative Design to Establish Proof of Concept of the Antidepressant Effects of the NR2B Subunit Selective N-Methyl-D-Aspartate Antagonist, CP-101,606, in Patients With Treatment-Refractory Major Depressive Disorder. Journal of Clinical Psychopharmacology, 2008, 28, 631-637.	0.7	453
49	Blockade of Cannabinoid Type 1 Receptors Augments the Antiparkinsonian Action of Levodopa without Affecting Dyskinesias in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Treated Rhesus Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 318-326.	1.3	97
50	The phencyclidine-like discriminative stimulus effects and reinforcing properties of the NR2B-selective N-methyl-D-aspartate antagonist CP-101 606 in rats and rhesus monkeys. Behavioural Pharmacology, 2007, 18, 731-743.	0.8	27
51	Role of estrogen receptors in neuroprotection by estradiol against MPTP toxicity. Neuropharmacology, 2007, 52, 1509-1520.	2.0	45
52	Discovery of a Series of 6,7-Dimethoxy-4-pyrrolidylquinazoline PDE10A Inhibitorsâ€. Journal of Medicinal Chemistry, 2007, 50, 182-185.	2.9	113
53	Quantification of MPTP-induced dopaminergic neurodegeneration in the mouse substantia nigra by laser capture microdissection. Journal of Neuroscience Methods, 2007, 159, 291-299.	1.3	15
54	Phosphodiesterase 10A inhibitors: a novel approach to the treatment of the symptoms of schizophrenia. Current Opinion in Investigational Drugs, 2007, 8, 54-9.	2.3	65

#	Article	IF	CITATIONS
55	Synthesis, Chiral Resolution, and Enantiopharmacology of a Potent 2,3-Benzodiazepine Derivative as Noncompetitive AMPA Receptor Antagonist. Journal of Medicinal Chemistry, 2006, 49, 575-581.	2.9	35
56	Genetic deletion of the striatum-enriched phosphodiesterase PDE10A: Evidence for altered striatal function. Neuropharmacology, 2006, 51, 374-385.	2.0	221
57	Inhibition of the striatum-enriched phosphodiesterase PDE10A: A novel approach to the treatment of psychosis. Neuropharmacology, 2006, 51, 386-396.	2.0	259
58	Cellular and subcellular localization of PDE10A, a striatum-enriched phosphodiesterase. Neuroscience, 2006, 139, 597-607.	1.1	186
59	Phosphodiesterases in the CNS: targets for drug development. Nature Reviews Drug Discovery, 2006, 5, 660-670.	21.5	353
60	New 7,8-ethylenedioxy-2,3-benzodiazepines as noncompetitive AMPA receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 167-170.	1.0	23
61	Immunohistochemical Localization of Phosphodiesterase 10A in Multiple Mammalian Species. Journal of Histochemistry and Cytochemistry, 2006, 54, 1205-1213.	1.3	244
62	Pde10a., 2006,,.		1
63	Synthesis of 2-semicarbazonomethyl-4,5-methylenedioxyphenylacetic acids as anticonvulsant agents. Il Farmaco, 2005, 60, 231-235.	0.9	6
64	Molecular Mechanism of AMPA Receptor Noncompetitive Antagonism. Neuron, 2005, 48, 279-288.	3.8	101
65	1-Aryl-6,7-methylenedioxy-3H-quinazolin-4-ones as Anticonvulsant Agents ChemInform, 2004, 35, no.	0.1	0
66	Discovery and SAR of 2-aminothiazole inhibitors of cyclin-dependent kinase 5/p25 as a potential treatment for Alzheimer's disease. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5521-5525.	1.0	95
67	The NR2B-selective NMDA receptor antagonist CP-101,606 exacerbates L-DOPA-induced dyskinesia and provides mild potentiation of anti-parkinsonian effects of L-DOPA in the MPTP-lesioned marmoset model of Parkinson's disease. Experimental Neurology, 2004, 188, 471-479.	2.0	88
68	NR2B selective NMDA receptor antagonist CP-101,606 prevents levodopa-induced motor response alterations in hemi-parkinsonian rats. Neuropharmacology, 2004, 47, 184-194.	2.0	85
69	Synthesis of 5-substituted 7,9-dihydro-8H-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-8-ones as anticonvulsant agents. Arkivoc, 2004, 2004, 196-203.	0.3	2
70	1-Aryl-6,7-methylenedioxy-3 H -quinazolin-4-ones as anticonvulsant agents. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 4427-4430.	1.0	59
71	Immunohistochemical localization of PDE10A in the rat brain. Brain Research, 2003, 985, 113-126.	1.1	320
72	Pramipexole inhibits MPTP toxicity in mice by dopamine D3 receptor dependent and independent mechanisms. European Journal of Pharmacology, 2003, 475, 29-35.	1.7	49

#	Article	IF	CITATIONS
73	Characterization of the mechanism of anticonvulsant activity for a selected set of putative AMPA receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 443-446.	1.0	17
74	CP-465,022, a Selective Noncompetitive AMPA Receptor Antagonist, Blocks AMPA Receptors but Is Not Neuroprotective In Vivo. Stroke, 2003, 34, 171-176.	1.0	26
75	Repeated Estradiol Treatment Prevents MPTP-Induced Dopamine Depletion in Male Mice. Neuroendocrinology, 2003, 77, 223-231.	1.2	85
76	Functional characterization of CP-465,022, a selective, noncompetitive AMPA receptor antagonist. Neuropharmacology, 2002, 42, 143-153.	2.0	58
77	Quinazolin-4-one α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor Antagonists:Â Structureâ^'Activity Relationship of the C-2 Side Chain Tether. Journal of Medicinal Chemistry, 2001, 44, 1710-1717.	2.9	43
78	Methaqualone derivatives are potent noncompetitive AMPA receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1203-1205.	1.0	24
79	Characterization of the Binding Site for a Novel Class of Noncompetitive α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor Antagonists. Molecular Pharmacology, 2000, 58, 1310-1317.	1.0	49
80	Antiparkinsonian Actions of CP-101,606, an Antagonist of NR2B Subunit-Containing N-Methyl-d-Aspartate Receptors. Experimental Neurology, 2000, 163, 239-243.	2.0	124
81	CP-101,606, an NR2B subunit selective NMDA receptor antagonist, inhibits NMDA and injury induced c-fos expression and cortical spreading depression in rodents. Neuropharmacology, 2000, 39, 1147-1155.	2.0	51
82	CPâ€101,606: An NR2Bâ€Selective NMDA Receptor Antagonist. CNS Neuroscience & Therapeutics, 1998, 4, 307-322.	4.0	19
83	(3R,4S)-3-[4-(4-Fluorophenyl)-4-hydroxypiperidin-1-yl]chroman-4,7-diol:Â A Conformationally Restricted Analogue of the NR2B Subtype-Selective NMDA Antagonist (1S,2S)-1-(4-Hydroxyphenyl)-2- (4-hydroxy-4-phenylpiperidino)-1-propanol. Journal of Medicinal Chemistry, 1998, 41, 1172-1184.	2.9	32
84	CP-101,606, a potent neuroprotectant selective for forebrain neurons. European Journal of Pharmacology, 1997, 331, 117-126.	1.7	103
85	Antinociceptive activity of CP-101,606, an NMDA receptor NR2B subunit antagonist. British Journal of Pharmacology, 1997, 122, 809-812.	2.7	122
86	A short synthesis of GYKI 52466. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 1991-1992.	1.0	6
87	Inositol phosphates and cell signaling: new views of InsP5 and InsP6. Trends in Biochemical Sciences, 1993, 18, 53-56.	3.7	136
88	Inositol polyphosphates and calcium signaling. Molecular and Cellular Neurosciences, 1992, 3, 1-10.	1.0	18
89	Role of Inositol Phosphates in the Actions of Substance P on NK1Receptors in Exocrine Gl and Cells. Annals of the New York Academy of Sciences, 1991, 632, 94-102.	1.8	16
90	Newly Synthesized Dopamine as the Precursor for Norepinephrine Synthesis in Bovine Adrenomedullary Chromaffin Cells. Journal of Neurochemistry, 1989, 53, 890-897.	2.1	13

#	Article	IF	CITATIONS
91	Adrenomedullary Chromaffin Cells as a Model to Study the Neurobiology of Ascorbic Acid: From Monooxygenation to Neuromodulation. Annals of the New York Academy of Sciences, 1987, 498, 28-53.	1.8	38
92	Intracerebroventricular administration of oxytocin and maternal behavior in rats after prolonged and acute steroid pretreatment. Hormones and Behavior, 1983, 17, 45-53.	1.0	57
93	Differential effects of estrogen and androgen on locomotor activity induced in castrated male rats by amphetamine, a novel environment, or apomorphine. Brain Research, 1981, 216, 89-107.	1.1	60
94	Persistence of dihydrotestosterone inhibition of lordosis in estrogen-primed rats fed a tryptophan-deficient diet. Brain Research Bulletin, 1981, 7, 1-4.	1.4	5